Anal Cancer

3.3347457627125 (944)
Posted by sonny 04/24/2009 @ 00:15

Tags : anal cancer, cancers, diseases, health

News headlines
Ryan O'Neal: I love Farrah more than ever now - msnbc.com
Just four months after she was originally diagnosed with anal cancer, her doctors told her she was cancer-free. But the disease returned a few months later, spreading to her liver, and eventually, other parts of her body. Still, a series of trips to...
Farrah Faucett's anal cancer has now spread to her liver - eFitnessNow
Charlie's Angels' star, Farrah Faucet's anal cancer has now spread to her liver, is losing her fight prompting her aging father James is flying to her house in Los Angles to say his last good bye. The 61-year-old actress' life long spouse Ryan O'Neal...
Ask Dr. H: Most anal cancer is linked to HPV - Philadelphia Inquirer
By Mitchell Hecht Question: I've heard the news that Farrah Fawcett has anal cancer and it has spread to her liver. What causes anal cancer? Is it from HPV (human papilloma virus)? Answer: We're not sure the cause of all forms of anal cancer - and...
Miss California USA keeps crown | O'Neal in 'awe' of Fawcett's courage - Telegraph-Journal
O'Neal and Stewart participated in the documentary titled Farrah's Story, a video diary of the actress' fight against anal cancer that has spread to her liver. The film airs Friday on NBC. O'Neal and the Charlie's Angels star had a long romantic...
God, Satan, and Miss USA - Philadelphia Inquirer
In an August 2008 interview she granted the Los Angeles Times on condition that it be held until her documentary, Farrah's Story, was about to air, Farrah Fawcett, 62, lashes out at the UCLA Medical Center for leaking that she had anal cancer shortly...
Letters posted here are associated with the following article: - Salon
AIDS and anal cancer are really funnier than kidney failure. And, as a bonus, many people with AIDS also get kidney failure. They also lose their minds. And lipodistrophy is hillarious. The people with those diseases are the same people who are running...
Farrah Fawcett's condition remains unchanged - Oneindia
Washington (ANI): Actress Farrah Fawcett, who is battling anal cancer, has quelled rumours stating that her health is deteriorating. The Charlie's Angels actress is resting at partner Ryan O'Neal's Malibu pad following her recent hospitalization for...
Farrah, HPV and Lollipop Parties - EmpowHer
Smoking and a history of abnormal paps or HPV, immunosuppression and history of anal sex put you in a higher risk category. Learn more about anal cancer So this information is more reason to give the Gardasil vaccine. As of December 31, 2008,...
Better Anal Cytology Screening Practices Needed for HIV-Infected ... - DG News
"HPV [human papillomavirus] infection of the anal canal can lead to anal dysplasia and cancer, and the rates of anal HPV infection and anal cancer appear to be increasing in HIV-infected men and women," the authors wrote in their poster presentation....

Anal cancer

Anal cancer is a type of cancer which arises from the anus, the distal orifice of the gastrointestinal tract. It is a distinct entity from the more common colorectal cancer. The etiology, risk factors, clinical progression, staging, and treatment are all different. Anal cancer is typically a squamous cell carcinoma that arises near the squamocolumnar junction.

The American Cancer Society estimates that in 2008 about 5,070 new cases of anal cancer will have been diagnosed in the United States (about 3,000 in women and 2,000 in men). It is typically found in adults, average age early 60s.

In the US, an estimated 680 people will have died of anal cancer in 2008.

Symptoms of anal cancer include bloating and change in bowel habits, sporadic bright red rectal bleeding accompanied with uncontrollable itching at the opening of the anus, lower back pain due to vaginal pressure, and low energy and fatigue, probably due the nature of the disease. Women may experience lower back pain due to pressure the tumor exerts on the vagina, and vaginal dryness.

Since many, if not most, anal cancers derive from human papillomavirus infections, and since the HPV vaccine prevents infection by some strains of the virus and has been shown to reduce the incidence of potentially precancerous lesions, scientists surmise that HPV vaccination may reduce the incidence of anal cancer.

Anal Pap smears similar to those used in cervical cancer screening have been studied for early detection of anal cancer in high-risk individuals.

Anal cancer is most effectively treated with surgery, and in early stage disease (i.e., localized cancer of the anus without metastasis to the inguinal lymph nodes), surgery is often curative. The difficulty with surgery has been the necessity of removing the anal sphincter, with concomitant fecal incontinence. For this reason, many patients with anal cancer have required permanent colostomies.

In more recent years, physicians have employed a combination strategy including chemotherapy and radiation treatments to reduce the necessity of debilitating surgery. This "combined modality" approach has led to the increased preservation of an intact anal sphincter, and therefore improved quality of life after definitive treatment. Survival and cure rates are excellent, and many patients are left with a functional sphincter. Some patients have fecal incontinence after combined chemotherapy and radiation. Biopsies to document disease regression after chemotherapy and radiation were commonly advised, but are not as frequent any longer. Current chemotherapy active in anal cancer includes cisplatin and 5-FU. Mitomycin has also been used, but is associated with increased toxicity.

Up to 10% of patients treated for anal cancer will develop distant metastatic disease. Metastatic or recurrent anal cancer is difficult to treat, and usually requires chemotherapy. Radiation is also employed to palliate specific locations of disease that may be causing symptoms. Chemotherapy commonly used is similar to other squamous cell epithelial neoplasms, such as platinum analogues, anthracyclines such as doxorubicin, and antimetabolites such as 5-FU and capecitabine. J.D. Hainsworth developed a protocol that includes Taxol and Carboplatinum along with 5-FU.

To the top



Cancer

Symptoms of cancer metastasis depend location of the tumor.

Cancer (medical term: malignant neoplasm) is a class of diseases in which a group of cells display uncontrolled growth (division beyond the normal limits), invasion (intrusion on and destruction of adjacent tissues), and sometimes metastasis (spread to other locations in the body via lymph or blood). These three malignant properties of cancers differentiate them from benign tumors, which are self-limited, and do not invade or metastasize. Most cancers form a tumor but some, like leukemia, do not. The branch of medicine concerned with the study, diagnosis, treatment, and prevention of cancer is oncology.

Cancer may affect people at all ages, even fetuses, but the risk for most varieties increases with age. Cancer causes about 13% of all deaths. According to the American Cancer Society, 7.6 million people died from cancer in the world during 2007. Cancers can affect all animals.

Nearly all cancers are caused by abnormalities in the genetic material of the transformed cells. These abnormalities may be due to the effects of carcinogens, such as tobacco smoke, radiation, chemicals, or infectious agents. Other cancer-promoting genetic abnormalities may be randomly acquired through errors in DNA replication, or are inherited, and thus present in all cells from birth. The heritability of cancers are usually affected by complex interactions between carcinogens and the host's genome. New aspects of the genetics of cancer pathogenesis, such as DNA methylation, and microRNAs are increasingly recognized as important.

Genetic abnormalities found in cancer typically affect two general classes of genes. Cancer-promoting oncogenes are typically activated in cancer cells, giving those cells new properties, such as hyperactive growth and division, protection against programmed cell death, loss of respect for normal tissue boundaries, and the ability to become established in diverse tissue environments. Tumor suppressor genes are then inactivated in cancer cells, resulting in the loss of normal functions in those cells, such as accurate DNA replication, control over the cell cycle, orientation and adhesion within tissues, and interaction with protective cells of the immune system.

Diagnosis usually requires the histologic examination of a tissue biopsy specimen by a pathologist, although the initial indication of malignancy can be symptoms or radiographic imaging abnormalities. Most cancers can be treated and some cured, depending on the specific type, location, and stage. Once diagnosed, cancer is usually treated with a combination of surgery, chemotherapy and radiotherapy. As research develops, treatments are becoming more specific for different varieties of cancer. There has been significant progress in the development of targeted therapy drugs that act specifically on detectable molecular abnormalities in certain tumors, and which minimize damage to normal cells. The prognosis of cancer patients is most influenced by the type of cancer, as well as the stage, or extent of the disease. In addition, histologic grading and the presence of specific molecular markers can also be useful in establishing prognosis, as well as in determining individual treatments.

Malignant tumors (cancers) are usually named using -carcinoma, -sarcoma or -blastoma as a suffix, with the Latin or Greek word for the organ of origin as the root. For instance, a cancer of the liver is called hepatocarcinoma; a cancer of the fat cells is called liposarcoma. For common cancers, the English organ name is used. For instance, the most common type of breast cancer is called ductal carcinoma of the breast or mammary ductal carcinoma. Here, the adjective ductal refers to the appearance of the cancer under the microscope, resembling normal breast ducts.

Benign tumors (which are not cancers) are named using -oma as a suffix with the organ name as the root. For instance, a benign tumor of the smooth muscle of the uterus is called leiomyoma (the common name of this frequent tumor is fibroid). Unfortunately, some cancers also use the -oma suffix, examples being melanoma and seminoma.

Every symptom in the above list can be caused by a variety of conditions (a list of which is referred to as the differential diagnosis). Cancer may be a common or uncommon cause of each item.

Cancer is a diverse class of diseases which differ widely in their causes and biology. Any organism, even plants, can acquire cancer. Nearly all known cancers arise gradually, as errors build up in the cancer cell and its progeny (see mechanisms section for common types of errors).

Anything which replicates (our cells) will probabilistically suffer from errors (mutations). Unless error correction and prevention is properly carried out, the errors will survive, and might passed along to daughter cells. Normally, the body safeguards against cancer via numerous methods, such as: apoptosis, helper molecules (some DNA polymerases), possibly senescence, etc. However these error-correction methods often fail in small ways, especially in environments that make errors more likely to arise and propagate. For example, such environments can include the presence of disruptive substances called carcinogens, or periodic injury (physical, heat, etc.), or environments that cells did not evolve to withstand, such as hypoxia (see subsections). Cancer is thus a progressive disease, and these progressive errors slowly accumulate until a cell begins to act contrary to its function in the animal.

Thus cancer often explodes in something akin to a chain reaction caused by a few errors, which compound into more severe errors. Errors which produce more errors are effectively the root cause of cancer, and also the reason that cancer is so hard to treat: even if there were 10,000,000,000 cancerous cells and one killed all but 10 of those cells, those cells (and other error-prone precancerous cells) could still self-replicate or send error-causing signals to other cells, starting the process over again. This rebellion-like scenario is an undesirable survival of the fittest, where the driving forces of evolution itself work against the body's design and enforcement of order. In fact, once cancer has begun to develop, this same force continues to drive the progression of cancer towards more invasive stages, and is called clonal evolution.

Cancer pathogenesis is traceable back to DNA mutations that impact cell growth and metastasis. Substances that cause DNA mutations are known as mutagens, and mutagens that cause cancers are known as carcinogens. Particular substances have been linked to specific types of cancer. Tobacco smoking is associated with many forms of cancer, and causes 90% of lung cancer. Prolonged exposure to asbestos fibers is associated with mesothelioma.

Many mutagens are also carcinogens, but some carcinogens are not mutagens. Alcohol is an example of a chemical carcinogen that is not a mutagen. Such chemicals may promote cancers through stimulating the rate of cell division. Faster rates of replication leaves less time for repair enzymes to repair damaged DNA during DNA replication, increasing the likelihood of a mutation.

Decades of research has demonstrated the link between tobacco use and cancer in the lung, larynx, head, neck, stomach, bladder, kidney, oesophagus and pancreas. Tobacco smoke contains over fifty known carcinogens, including nitrosamines and polycyclic aromatic hydrocarbons. Tobacco is responsible for about one in three of all cancer deaths in the developed world, and about one in five worldwide. Indeed, lung cancer death rates in the United States have mirrored smoking patterns, with increases in smoking followed by dramatic increases in lung cancer death rates and, more recently, decreases in smoking followed by decreases in lung cancer death rates in men. However, the numbers of smokers worldwide is still rising, leading to what some organizations have described as the tobacco epidemic.

Sources of ionizing radiation, such as radon gas, can cause cancer. Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies.

Non-ionizing radio frequency radiation from mobile phones and other sources has also been proposed as a cause of cancer, but there is little evidence of such a link. Nevertheless, a few experts caution against prolonged exposure based on the precautionary principle.

Some cancers can be caused by infection with pathogens. Many cancers originate from a viral infection; this is especially true in animals such as birds, but also in humans, as viruses are responsible for 15% of human cancers worldwide. The main viruses associated with human cancers are human papillomavirus, hepatitis B and hepatitis C virus, Epstein-Barr virus, and human T-lymphotropic virus. Experimental and epidemiological data imply a causative role for viruses and they appear to be the second most important risk factor for cancer development in humans, exceeded only by tobacco usage. The mode of virally-induced tumors can be divided into two, acutely-transforming or slowly-transforming. In acutely transforming viruses, the virus carries an overactive oncogene called viral-oncogene (v-onc), and the infected cell is transformed as soon as v-onc is expressed. In contrast, in slowly-transforming viruses, the virus genome is inserts near a proto-oncogene in the host genome. The viral promoter or other transcription regulation elements then cause overexpression of that proto-oncogene. This induces uncontrolled cell division. Because the site of insertion is not specific to proto-oncogenes and the chance of insertion near any proto-oncogene is low, slowly-transforming viruses will cause tumors much longer after infection than the acutely-transforming viruses.

Hepatitis viruses, including hepatitis B and hepatitis C, can induce a chronic viral infection that leads to liver cancer in 0.47% of hepatitis B patients per year (especially in Asia, less so in North America), and in 1.4% of hepatitis C carriers per year. Liver cirrhosis, whether from chronic viral hepatitis infection or alcoholism, is associated with the development of liver cancer, and the combination of cirrhosis and viral hepatitis presents the highest risk of liver cancer development. Worldwide, liver cancer is one of the most common, and most deadly, cancers due to a huge burden of viral hepatitis transmission and disease.

Advances in cancer research have made a vaccine designed to prevent cancer available. In 2006, the U.S. Food and Drug Administration approved a human papilloma virus vaccine, called Gardasil. The vaccine protects against four HPV types, which together cause 70% of cervical cancers and 90% of genital warts. In March 2007, the US Centers for Disease Control and Prevention (CDC) Advisory Committee on Immunization Practices (ACIP) officially recommended that females aged 11-12 receive the vaccine, and indicated that females as young as age 9 and as old as age 26 are also candidates for immunization.

In addition to viruses, researchers have noted a connection between bacteria and certain cancers. The most prominent example is the link between chronic infection of the wall of the stomach with Helicobacter pylori and gastric cancer. Although only a minority of those infected with Helicobacter go on to develop cancer, since this pathogen is quite common it is probably responsible for the majority of these cancers.

Some hormones can act in a similar manner to non-mutagenic carcinogens in that they may stimulate excessive cell growth. A well-established example is the role of hyperestrogenic states in promoting endometrial cancer.

HIV is associated with a number of malignancies, including Kaposi's sarcoma, non-Hodgkin's lymphoma, and HPV-associated malignancies such as anal cancer and cervical cancer. AIDS-defining illnesses have long included these diagnoses. The increased incidence of malignancies in HIV patients points to the breakdown of immune surveillance as a possible etiology of cancer. Certain other immune deficiency states (e.g. common variable immunodeficiency and IgA deficiency) are also associated with increased risk of malignancy.

Excepting the rare transmissions that occur with pregnancies and only a marginal few organ donors, cancer is generally not a transmissible disease. The main reason for this is tissue graft rejection caused by MHC incompatibility. In humans and other vertebrates, the immune system uses MHC antigens to differentiate between "self" and "non-self" cells because these antigens are different from person to person. When non-self antigens are encountered, the immune system reacts against the appropriate cell. Such reactions may protect against tumour cell engraftment by eliminating implanted cells. In the United States, approximately 3,500 pregnant women have a malignancy annually, and transplacental transmission of acute leukaemia, lymphoma, melanoma and carcinoma from mother to fetus has been observed. The development of donor-derived tumors from organ transplants is exceedingly rare. The main cause of organ transplant associated tumors seems to be malignant melanoma, that was undetected at the time of organ harvest, though other cases exist. In fact, cancer from one organism will usually grow in another organism of that species, as long as they share the same histocompatibility genes, proven using mice; however this would never happen in a real-world setting except as described above.

In non-humans, a few types of cancer have been found to be caused by transmission of the tumor cells themselves. This phenomenon is seen in dogs with Sticker's sarcoma, also known as canine transmissible venereal tumor, as well as Devil facial tumour disease in Tasmanian devils.

Cancer is fundamentally a disease of regulation of tissue growth. In order for a normal cell to transform into a cancer cell, genes which regulate cell growth and differentiation must be altered. Genetic changes can occur at many levels, from gain or loss of entire chromosomes to a mutation affecting a single DNA nucleotide. There are two broad categories of genes which are affected by these changes. Oncogenes may be normal genes which are expressed at inappropriately high levels, or altered genes which have novel properties. In either case, expression of these genes promotes the malignant phenotype of cancer cells. Tumor suppressor genes are genes which inhibit cell division, survival, or other properties of cancer cells. Tumor suppressor genes are often disabled by cancer-promoting genetic changes. Typically, changes in many genes are required to transform a normal cell into a cancer cell.

There is a diverse classification scheme for the various genomic changes which may contribute to the generation of cancer cells. Most of these changes are mutations, or changes in the nucleotide sequence of genomic DNA. Aneuploidy, the presence of an abnormal number of chromosomes, is one genomic change which is not a mutation, and may involve either gain or loss of one or more chromosomes through errors in mitosis.

Large-scale mutations involve the deletion or gain of a portion of a chromosome. Genomic amplification occurs when a cell gains many copies (often 20 or more) of a small chromosomal locus, usually containing one or more oncogenes and adjacent genetic material. Translocation occurs when two separate chromosomal regions become abnormally fused, often at a characteristic location. A well-known example of this is the Philadelphia chromosome, or translocation of chromosomes 9 and 22, which occurs in chronic myelogenous leukemia, and results in production of the BCR-abl fusion protein, an oncogenic tyrosine kinase.

Small-scale mutations include point mutations, deletions, and insertions, which may occur in the promoter of a gene and affect its expression, or may occur in the gene's coding sequence and alter the function or stability of its protein product. Disruption of a single gene may also result from integration of genomic material from a DNA virus or retrovirus, and such an event may also result in the expression of viral oncogenes in the affected cell and its descendants.

Epigenetics is the study of the regulation of gene expression through chemical, non-mutational changes in DNA structure. The theory of epigenetics in cancer pathogenesis is that non-mutational changes to DNA can lead to alterations in gene expression. Normally, oncogenes are silent, for example, because of DNA methylation. Loss of that methylation can induce the aberrant expression of oncogenes, leading to cancer pathogenesis. Known mechanisms of epigenetic change include DNA methylation, and methylation or acetylation of histone proteins bound to chromosomal DNA at specific locations. Classes of medications, known as HDAC inhibitors and DNA methyltransferase inhibitors, can re-regulate the epigenetic signaling in the cancer cell.

Oncogenes promote cell growth through a variety of ways. Many can produce hormones, a "chemical messenger" between cells which encourage mitosis, the effect of which depends on the signal transduction of the receiving tissue or cells. In other words, when a hormone receptor on a recipient cell is stimulated, the signal is conducted from the surface of the cell to the cell nucleus to effect some change in gene transcription regulation at the nuclear level. Some oncogenes are part of the signal transduction system itself, or the signal receptors in cells and tissues themselves, thus controlling the sensitivity to such hormones. Oncogenes often produce mitogens, or are involved in transcription of DNA in protein synthesis, which creates the proteins and enzymes responsible for producing the products and biochemicals cells use and interact with.

Mutations in proto-oncogenes, which are the normally quiescent counterparts of oncogenes, can modify their expression and function, increasing the amount or activity of the product protein. When this happens, the proto-oncogenes become oncogenes, and this transition upsets the normal balance of cell cycle regulation in the cell, making uncontrolled growth possible. The chance of cancer cannot be reduced by removing proto-oncogenes from the genome, even if this were possible, as they are critical for growth, repair and homeostasis of the organism. It is only when they become mutated that the signals for growth become excessive.

One of the first oncogenes to be defined in cancer research is the ras oncogene. Mutations in the Ras family of proto-oncogenes (comprising H-Ras, N-Ras and K-Ras) are very common, being found in 20% to 30% of all human tumours. Ras was originally identified in the Harvey sarcoma virus genome, and researchers were surprised that not only was this gene present in the human genome but that, when ligated to a stimulating control element, could induce cancers in cell line cultures.

Tumor suppressor genes code for anti-proliferation signals and proteins that suppress mitosis and cell growth. Generally, tumor suppressors are transcription factors that are activated by cellular stress or DNA damage. Often DNA damage will cause the presence of free-floating genetic material as well as other signs, and will trigger enzymes and pathways which lead to the activation of tumor suppressor genes. The functions of such genes is to arrest the progression of the cell cycle in order to carry out DNA repair, preventing mutations from being passed on to daughter cells. The p53 protein, one of the most important studied tumor suppressor genes, is a transcription factor activated by many cellular stressors including hypoxia and ultraviolet radiation damage.

Despite nearly half of all cancers possibly involving alterations in p53, its tumor suppressor function is poorly understood. p53 clearly has two functions: one a nuclear role as a transcription factor, and the other a cytoplasmic role in regulating the cell cycle, cell division, and apoptosis.

The Warburg hypothesis is the preferential use of glycolysis for energy to sustain cancer growth. p53 has been shown to regulate the shift from the respiratory to the glycolytic pathway.

However, a mutation can damage the tumor suppressor gene itself, or the signal pathway which activates it, "switching it off". The invariable consequence of this is that DNA repair is hindered or inhibited: DNA damage accumulates without repair, inevitably leading to cancer.

Mutations of tumor suppressor genes that occur in germline cells are passed along to offspring, and increase the likelihood for cancer diagnoses in subsequent generations. Members of these families have increased incidence and decreased latency of multiple tumors. The tumor types are typical for each type of tumor suppressor gene mutation, with some mutations causing particular cancers, and other mutations causing others. The mode of inheritance of mutant tumor suppressors is that an affected member inherits a defective copy from one parent, and a normal copy from the other. For instance, individuals who inherit one mutant p53 allele (and are therefore heterozygous for mutated p53) can develop melanomas and pancreatic cancer, known as Li-Fraumeni syndrome. Other inherited tumor suppressor gene syndromes include Rb mutations, linked to retinoblastoma, and APC gene mutations, linked to adenopolyposis colon cancer. Adenopolyposis colon cancer is associated with thousands of polyps in colon while young, leading to colon cancer at a relatively early age. Finally, inherited mutations in BRCA1 and BRCA2 lead to early onset of breast cancer.

Development of cancer was proposed in 1971 to depend on at least two mutational events. In what became known as the Knudson two-hit hypothesis, an inherited, germ-line mutation in a tumor suppressor gene would only cause cancer if another mutation event occurred later in the organism's life, inactivating the other allele of that tumor suppressor gene.

Usually, oncogenes are dominant, as they contain gain-of-function mutations, while mutated tumor suppressors are recessive, as they contain loss-of-function mutations. Each cell has two copies of the same gene, one from each parent, and under most cases gain of function mutations in just one copy of a particular proto-oncogene is enough to make that gene a true oncogene. On the other hand, loss of function mutations need to happen in both copies of a tumor suppressor gene to render that gene completely non-functional. However, cases exist in which one mutated copy of a tumor suppressor gene can render the other, wild-type copy non-functional. This phenomenon is called the dominant negative effect and is observed in many p53 mutations.

Knudson’s two hit model has recently been challenged by several investigators. Inactivation of one allele of some tumor suppressor genes is sufficient to cause tumors. This phenomenon is called haploinsufficiency and has been demonstrated by a number of experimental approaches. Tumors caused by haploinsufficiency usually have a later age of onset when compared with those by a two hit process.

Often, the multiple genetic changes which result in cancer may take many years to accumulate. During this time, the biological behavior of the pre-malignant cells slowly change from the properties of normal cells to cancer-like properties. Pre-malignant tissue can have a distinctive appearance under the microscope. Among the distinguishing traits are an increased number of dividing cells, variation in nuclear size and shape, variation in cell size and shape, loss of specialized cell features, and loss of normal tissue organization. Dysplasia is an abnormal type of excessive cell proliferation characterized by loss of normal tissue arrangement and cell structure in pre-malignant cells. These early neoplastic changes must be distinguished from hyperplasia, a reversible increase in cell division caused by an external stimulus, such as a hormonal imbalance or chronic irritation.

The most severe cases of dysplasia are referred to as "carcinoma in situ." In Latin, the term "in situ" means "in place", so carcinoma in situ refers to an uncontrolled growth of cells that remains in the original location and has not shown invasion into other tissues. Nevertheless, carcinoma in situ may develop into an invasive malignancy and is usually removed surgically, if possible.

Just like a population of animals undergoes evolution, an unchecked population of cells also can undergo evolution. This undesirable process is called somatic evolution, and is how cancer arises and becomes more malignant.

Most changes in cellular metabolism that allow cells to grow in a disorderly fashion lead to cell death. However once cancer begins, cancer cells undergo a process of natural selection: the few cells with new genetic changes that enhance their survival or reproduction continue to multiply, and soon come to dominate the growing tumor, as cells with less favorable genetic change are out-competed. This is exactly how pathogens such as MRSA can become antibiotic-resistant (or how HIV can become drug-resistant), and the same reason why crop blights and pests can become pesticide-resistant. This evolution is why cancer recurrences will have cells which have acquired cancer-drug resistance (or in some cases, resistance to radiation from radiotherapy).

These biological changes are classical in carcinomas; other malignant tumor may not need all to achieve them all. For example, tissue invasion and displacement to distant sites are normal properties of leukocytes; these steps are not needed in the development of leukemia. The different steps do not necessarily represent individual mutations. For example, inactivation of a single gene, coding for the p53 protein, will cause genomic instability, evasion of apoptosis and increased angiogenesis. Not all the cancer cells are dividing. Rather, a subset of the cells in a tumor, called cancer stem cells, replicate themselves and generate differentiated cells.

To understand why cancer exists in the first place (and why the human body has only evolved "good-enough" tumor-suppression), it can be insightful to compare biological organisms with synthetic machines and immortal organisms. For example, a computer system does not "get cancer" because it is built out of auditable parts, can employ extreme forms of error-correction, and employs other steps to reduce risk of errors (such as running in a temperature range that prevents CPU errors). Biological organisms on the other hand are built out of self-replicating cells, which have higher failure rates and are not easily auditable. Most importantly, biological systems did not evolve with human intelligence and technology at its disposal, or with the resources to let cells extensively audit other cells. Rather, organisms evolved in an environment where it was beneficial to trade off longevity for short-term reproductive gains; it may even have been beneficial to increase the rate of mutation to adapt to new environments (such as deadly diseases), and thus a few extra cancers late in life are not highly selected against by evolution. This is in essence why cancer is more common in biological organisms, and why it may be impossible to entirely prevent cancer without significant and proactive intervention within the human body on a cellular level.

Cancer prevention is defined as active measures to decrease the incidence of cancer. This can be accomplished by avoiding carcinogens or altering their metabolism, pursuing a lifestyle or diet that modifies cancer-causing factors and/or medical intervention (chemoprevention, treatment of pre-malignant lesions). The epidemiological concept of "prevention" is usually defined as either primary prevention, for people who have not been diagnosed with a particular disease, or secondary prevention, aimed at reducing recurrence or complications of a previously diagnosed illness.

The vast majority of cancer risk factors are environmental or lifestyle-related in nature, leading to the claim that cancer is a largely preventable disease. Examples of modifiable cancer risk factors include alcohol consumption (associated with increased risk of oral, esophageal, breast, and other cancers), smoking (although 20% of women with lung cancer have never smoked, versus 10% of men), physical inactivity (associated with increased risk of colon, breast, and possibly other cancers), and being overweight / obese (associated with colon, breast, endometrial, and possibly other cancers). Based on epidemiologic evidence, it is now thought that avoiding excessive alcohol consumption may contribute to reductions in risk of certain cancers; however, compared with tobacco exposure, the magnitude of effect is modest or small and the strength of evidence is often weaker. Other lifestyle and environmental factors known to affect cancer risk (either beneficially or detrimentally) include certain sexually transmitted diseases (such as those conveyed by the human papillomavirus), the use of exogenous hormones, exposure to ionizing radiation and ultraviolet radiation, and certain occupational and chemical exposures.

Every year, at least 200,000 people die worldwide from cancer related to their workplace. Millions of workers run the risk of developing cancers such as lung cancer and mesothelioma from inhaling asbestos fibers and tobacco smoke, or leukemia from exposure to benzene at their workplaces. Currently, most cancer deaths caused by occupational risk factors occur in the developed world. It is estimated that approximately 20,000 cancer deaths and 40,000 new cases of cancer each year in the U.S. are attributable to occupation.

The consensus on diet and cancer is that obesity increases the risk of developing cancer. Particular dietary practices often explain differences in cancer incidence in different countries (e.g. gastric cancer is more common in Japan, while colon cancer is more common in the United States. In this example the preceding consideration of Haplogroups are excluded). Studies have shown that immigrants develop the risk of their new country, often within one generation, suggesting a substantial link between diet and cancer. Whether reducing obesity in a population also reduces cancer incidence is unknown.

Despite frequent reports of particular substances (including foods) having a beneficial or detrimental effect on cancer risk, few of these have an established link to cancer. These reports are often based on studies in cultured cell media or animals. Public health recommendations cannot be made on the basis of these studies until they have been validated in an observational (or occasionally a prospective interventional) trial in humans.

Proposed dietary interventions for primary cancer risk reduction generally gain support from epidemiological association studies. Examples of such studies include reports that reduced meat consumption is associated with decreased risk of colon cancer, and reports that consumption of coffee is associated with a reduced risk of liver cancer. Studies have linked consumption of grilled meat to an increased risk of stomach cancer, colon cancer, breast cancer, and pancreatic cancer, a phenomenon which could be due to the presence of carcinogens such as benzopyrene in foods cooked at high temperatures.

A 2005 secondary prevention study showed that consumption of a plant-based diet and lifestyle changes resulted in a reduction in cancer markers in a group of men with prostate cancer who were using no conventional treatments at the time. These results were amplified by a 2006 study in which over 2,400 women were studied, half randomly assigned to a normal diet, the other half assigned to a diet containing less than 20% calories from fat. The women on the low fat diet were found to have a markedly lower risk of breast cancer recurrence, in the interim report of December, 2006.

Recent studies have also demonstrated potential links between some forms of cancer and high consumption of refined sugars and other simple carbohydrates. Although the degree of correlation and the degree of causality is still debated, some organizations have in fact begun to recommend reducing intake of refined sugars and starches as part of their cancer prevention regimens.

In November 2007, the American Institute for Cancer Research (AICR), in conjunction with the World Cancer Research Fund (WCRF), published Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective, "the most current and comprehensive analysis of the literature on diet, physical activity and cancer". The WCRF/AICR Expert Report lists 10 recommendations that people can follow to help reduce their risk of developing cancer, including the following dietary guidelines: (1) reducing intake of foods and drinks that promote weight gain, namely energy-dense foods and sugary drinks, (2) eating mostly foods of plant origin, (3) limiting intake of red meat and avoiding processed meat, (4) limiting consumption of alcoholic beverages, and (5) reducing intake of salt and avoiding mouldy cereals (grains) or pulses (legumes).

The idea that cancer can be prevented through vitamin supplementation stems from early observations correlating human disease with vitamin deficiency, such as pernicious anemia with vitamin B12 deficiency, and scurvy with Vitamin C deficiency. This has largely not been proven to be the case with cancer, and vitamin supplementation is largely not proving effective in preventing cancer. The cancer-fighting components of food are also proving to be more numerous and varied than previously understood, so patients are increasingly being advised to consume fresh, unprocessed fruits and vegetables for maximal health benefits.

Epidemiological studies have shown that low vitamin D status is correlated to increased cancer risk. However, the results of such studies need to be treated with caution, as they cannot show whether a correlation between two factors means that one causes the other (i.e. correlation does not imply causation). The possibility that Vitamin D might protect against cancer has been contrasted with the risk of malignancy from sun exposure. Since exposure to the sun enhances natural human production of vitamin D, some cancer researchers have argued that the potential deleterious malignant effects of sun exposure are far outweighed by the cancer-preventing effects of extra vitamin D synthesis in sun-exposed skin. In 2002, Dr. William B. Grant claimed that 23,800 premature cancer deaths occur in the US annually due to insufficient UVB exposure (apparently via vitamin D deficiency). This is higher than 8,800 deaths occurred from melanoma or squamous cell carcinoma, so the overall effect of sun exposure might be beneficial. Another research group estimates that 50,000–63,000 individuals in the United States and 19,000 - 25,000 in the UK die prematurely from cancer annually due to insufficient vitamin D.

The case of beta-carotene provides an example of the importance of randomized clinical trials. Epidemiologists studying both diet and serum levels observed that high levels of beta-carotene, a precursor to vitamin A, were associated with a protective effect, reducing the risk of cancer. This effect was particularly strong in lung cancer. This hypothesis led to a series of large randomized clinical trials conducted in both Finland and the United States (CARET study) during the 1980s and 1990s. This study provided about 80,000 smokers or former smokers with daily supplements of beta-carotene or placebos. Contrary to expectation, these tests found no benefit of beta-carotene supplementation in reducing lung cancer incidence and mortality. In fact, the risk of lung cancer was slightly, but not significantly, increased by beta-carotene, leading to an early termination of the study.

Results reported in the Journal of the American Medical Association (JAMA) in 2007 indicate that folic acid supplementation is not effective in preventing colon cancer, and folate consumers may be more likely to form colon polyps.

The concept that medications could be used to prevent cancer is an attractive one, and many high-quality clinical trials support the use of such chemoprevention in defined circumstances.

Daily use of tamoxifen, a selective estrogen receptor modulator (SERM), typically for 5 years, has been demonstrated to reduce the risk of developing breast cancer in high-risk women by about 50%. A recent study reported that the selective estrogen receptor modulator raloxifene has similar benefits to tamoxifen in preventing breast cancer in high-risk women, with a more favorable side effect profile.

Raloxifene is a SERM like tamoxifen; it has been shown (in the STAR trial) to reduce the risk of breast cancer in high-risk women equally as well as tamoxifen. In this trial, which studied almost 20,000 women, raloxifene had fewer side effects than tamoxifen, though it did permit more DCIS to form.

Finasteride, a 5-alpha-reductase inhibitor, has been shown to lower the risk of prostate cancer, though it seems to mostly prevent low-grade tumors. The effect of COX-2 inhibitors such as rofecoxib and celecoxib upon the risk of colon polyps have been studied in familial adenomatous polyposis patients and in the general population. In both groups, there were significant reductions in colon polyp incidence, but this came at the price of increased cardiovascular toxicity.

Genetic testing for high-risk individuals is already available for certain cancer-related genetic mutations. Carriers of genetic mutations that increase risk for cancer incidence can undergo enhanced surveillance, chemoprevention, or risk-reducing surgery. Early identification of inherited genetic risk for cancer, along with cancer-preventing interventions such as surgery or enhanced surveillance, can be lifesaving for high-risk individuals.

Prophylactic vaccines have been developed to prevent infection by oncogenic infectious agents such as viruses, and therapeutic vaccines are in development to stimulate an immune response against cancer-specific epitopes.

As reported above, a preventive human papillomavirus vaccine exists that targets certain sexually transmitted strains of human papillomavirus that are associated with the development of cervical cancer and genital warts. The only two HPV vaccines on the market as of October 2007 are Gardasil and Cervarix. There is also a hepatitis B vaccine, which prevents infection with the hepatitis B virus, an infectious agent that can cause liver cancer. A canine melanoma vaccine has also been developed.

Cancer screening is an attempt to detect unsuspected cancers in an asymptomatic population. Screening tests suitable for large numbers of healthy people must be relatively affordable, safe, noninvasive procedures with acceptably low rates of false positive results. If signs of cancer are detected, more definitive and invasive follow up tests are performed to confirm the diagnosis.

Screening for cancer can lead to earlier diagnosis in specific cases. Early diagnosis may lead to extended life, but may also falsely prolong the lead time to death through lead time bias or length time bias.

A number of different screening tests have been developed for different malignancies. Breast cancer screening can be done by breast self-examination, though this approach was discredited by a 2005 study in over 300,000 Chinese women. Screening for breast cancer with mammograms has been shown to reduce the average stage of diagnosis of breast cancer in a population. Stage of diagnosis in a country has been shown to decrease within ten years of introduction of mammographic screening programs. Colorectal cancer can be detected through fecal occult blood testing and colonoscopy, which reduces both colon cancer incidence and mortality, presumably through the detection and removal of pre-malignant polyps. Similarly, cervical cytology testing (using the Pap smear) leads to the identification and excision of precancerous lesions. Over time, such testing has been followed by a dramatic reduction of cervical cancer incidence and mortality. Testicular self-examination is recommended for men beginning at the age of 15 years to detect testicular cancer. Prostate cancer can be screened using a digital rectal exam along with prostate specific antigen (PSA) blood testing, though some authorities (such as the US Preventive Services Task Force) recommend against routinely screening all men.

Screening for cancer is controversial in cases when it is not yet known if the test actually saves lives. The controversy arises when it is not clear if the benefits of screening outweigh the risks of follow-up diagnostic tests and cancer treatments. For example: when screening for prostate cancer, the PSA test may detect small cancers that would never become life threatening, but once detected will lead to treatment. This situation, called overdiagnosis, puts men at risk for complications from unnecessary treatment such as surgery or radiation. Follow up procedures used to diagnose prostate cancer (prostate biopsy) may cause side effects, including bleeding and infection. Prostate cancer treatment may cause incontinence (inability to control urine flow) and erectile dysfunction (erections inadequate for intercourse). Similarly, for breast cancer, there have recently been criticisms that breast screening programs in some countries cause more problems than they solve. This is because screening of women in the general population will result in a large number of women with false positive results which require extensive follow-up investigations to exclude cancer, leading to having a high number-to-treat (or number-to-screen) to prevent or catch a single case of breast cancer early.

Cervical cancer screening via the Pap smear has the best cost-benefit profile of all the forms of cancer screening from a public health perspective as, being largely caused by a virus, it has clear risk factors (sexual contact), and the natural progression of cervical cancer is that it normally spreads slowly over a number of years therefore giving more time for the screening program to catch it early. Moreover, the test itself is easy to perform and relatively cheap.

For these reasons, it is important that the benefits and risks of diagnostic procedures and treatment be taken into account when considering whether to undertake cancer screening.

Use of medical imaging to search for cancer in people without clear symptoms is similarly marred with problems. There is a significant risk of detection of what has been recently called an incidentaloma - a benign lesion that may be interpreted as a malignancy and be subjected to potentially dangerous investigations. Recent studies of CT scan-based screening for lung cancer in smokers have had equivocal results, and systematic screening is not recommended as of July 2007. Randomized clinical trials of plain-film chest X-rays to screen for lung cancer in smokers have shown no benefit for this approach.

Canine cancer detection has shown promise, but is still in the early stages of research.

Most cancers are initially recognized either because signs or symptoms appear or through screening. Neither of these lead to a definitive diagnosis, which usually requires the opinion of a pathologist, a type of physician (medical doctor) who specializes in the diagnosis of cancer and other diseases.

People with suspected cancer are investigated with medical tests. These commonly include blood tests, X-rays, CT scans and endoscopy.

A cancer may be suspected for a variety of reasons, but the definitive diagnosis of most malignancies must be confirmed by histological examination of the cancerous cells by a pathologist. Tissue can be obtained from a biopsy or surgery. Many biopsies (such as those of the skin, breast or liver) can be done in a doctor's office. Biopsies of other organs are performed under anesthesia and require surgery in an operating room.

The tissue diagnosis given by the pathologist indicates the type of cell that is proliferating, its histological grade, genetic abnormalities, and other features of the tumor. Together, this information is useful to evaluate the prognosis of the patient and to choose the best treatment. Cytogenetics and immunohistochemistry are other types of testing that the pathologist may perform on the tissue specimen. These tests may provide information about the molecular changes (such as mutations, fusion genes, and numerical chromosome changes) that has happened in the cancer cells, and may thus also indicate the future behavior of the cancer (prognosis) and best treatment.

Cancer can be treated by surgery, chemotherapy, radiation therapy, immunotherapy, monoclonal antibody therapy or other methods. The choice of therapy depends upon the location and grade of the tumor and the stage of the disease, as well as the general state of the patient (performance status). A number of experimental cancer treatments are also under development.

Complete removal of the cancer without damage to the rest of the body is the goal of treatment. Sometimes this can be accomplished by surgery, but the propensity of cancers to invade adjacent tissue or to spread to distant sites by microscopic metastasis often limits its effectiveness. The effectiveness of chemotherapy is often limited by toxicity to other tissues in the body. Radiation can also cause damage to normal tissue.

Because "cancer" refers to a class of diseases, it is unlikely that there will ever be a single "cure for cancer" any more than there will be a single treatment for all infectious diseases.

In theory, non-hematological cancers can be cured if entirely removed by surgery, but this is not always possible. When the cancer has metastasized to other sites in the body prior to surgery, complete surgical excision is usually impossible. In the Halstedian model of cancer progression, tumors grow locally, then spread to the lymph nodes, then to the rest of the body. This has given rise to the popularity of local-only treatments such as surgery for small cancers. Even small localized tumors are increasingly recognized as possessing metastatic potential.

Examples of surgical procedures for cancer include mastectomy for breast cancer and prostatectomy for prostate cancer. The goal of the surgery can be either the removal of only the tumor, or the entire organ. A single cancer cell is invisible to the naked eye but can regrow into a new tumor, a process called recurrence. For this reason, the pathologist will examine the surgical specimen to determine if a margin of healthy tissue is present, thus decreasing the chance that microscopic cancer cells are left in the patient.

In addition to removal of the primary tumor, surgery is often necessary for staging, e.g. determining the extent of the disease and whether it has metastasized to regional lymph nodes. Staging is a major determinant of prognosis and of the need for adjuvant therapy.

Occasionally, surgery is necessary to control symptoms, such as spinal cord compression or bowel obstruction. This is referred to as palliative treatment.

Radiation therapy (also called radiotherapy, X-ray therapy, or irradiation) is the use of ionizing radiation to kill cancer cells and shrink tumors. Radiation therapy can be administered externally via external beam radiotherapy (EBRT) or internally via brachytherapy. The effects of radiation therapy are localised and confined to the region being treated. Radiation therapy injures or destroys cells in the area being treated (the "target tissue") by damaging their genetic material, making it impossible for these cells to continue to grow and divide. Although radiation damages both cancer cells and normal cells, most normal cells can recover from the effects of radiation and function properly. The goal of radiation therapy is to damage as many cancer cells as possible, while limiting harm to nearby healthy tissue. Hence, it is given in many fractions, allowing healthy tissue to recover between fractions.

Radiation therapy may be used to treat almost every type of solid tumor, including cancers of the brain, breast, cervix, larynx, lung, pancreas, prostate, skin, stomach, uterus, or soft tissue sarcomas. Radiation is also used to treat leukemia and lymphoma. Radiation dose to each site depends on a number of factors, including the radiosensitivity of each cancer type and whether there are tissues and organs nearby that may be damaged by radiation. Thus, as with every form of treatment, radiation therapy is not without its side effects.

Chemotherapy is the treatment of cancer with drugs ("anticancer drugs") that can destroy cancer cells. In current usage, the term "chemotherapy" usually refers to cytotoxic drugs which affect rapidly dividing cells in general, in contrast with targeted therapy (see below). Chemotherapy drugs interfere with cell division in various possible ways, e.g. with the duplication of DNA or the separation of newly formed chromosomes. Most forms of chemotherapy target all rapidly dividing cells and are not specific to cancer cells, although some degree of specificity may come from the inability of many cancer cells to repair DNA damage, while normal cells generally can. Hence, chemotherapy has the potential to harm healthy tissue, especially those tissues that have a high replacement rate (e.g. intestinal lining). These cells usually repair themselves after chemotherapy.

Because some drugs work better together than alone, two or more drugs are often given at the same time. This is called "combination chemotherapy"; most chemotherapy regimens are given in a combination.

The treatment of some leukaemias and lymphomas requires the use of high-dose chemotherapy, and total body irradiation (TBI). This treatment ablates the bone marrow, and hence the body's ability to recover and repopulate the blood. For this reason, bone marrow, or peripheral blood stem cell harvesting is carried out before the ablative part of the therapy, to enable "rescue" after the treatment has been given. This is known as autologous stem cell transplantation. Alternatively, hematopoietic stem cells may be transplanted from a matched unrelated donor (MUD).

Targeted therapy, which first became available in the late 1990s, has had a significant impact in the treatment of some types of cancer, and is currently a very active research area. This constitutes the use of agents specific for the deregulated proteins of cancer cells. Small molecule targeted therapy drugs are generally inhibitors of enzymatic domains on mutated, overexpressed, or otherwise critical proteins within the cancer cell. Prominent examples are the tyrosine kinase inhibitors imatinib (Gleevec/Glivec) and gefitinib (Iressa).

Monoclonal antibody therapy is another strategy in which the therapeutic agent is an antibody which specifically binds to a protein on the surface of the cancer cells. Examples include the anti-HER2/neu antibody trastuzumab (Herceptin) used in breast cancer, and the anti-CD20 antibody rituximab, used in a variety of B-cell malignancies.

Targeted therapy can also involve small peptides as "homing devices" which can bind to cell surface receptors or affected extracellular matrix surrounding the tumor. Radionuclides which are attached to these peptides (e.g. RGDs) eventually kill the cancer cell if the nuclide decays in the vicinity of the cell. Especially oligo- or multimers of these binding motifs are of great interest, since this can lead to enhanced tumor specificity and avidity.

Photodynamic therapy (PDT) is a ternary treatment for cancer involving a photosensitizer, tissue oxygen, and light (often using lasers). PDT can be used as treatment for basal cell carcinoma (BCC) or lung cancer; PDT can also be useful in removing traces of malignant tissue after surgical removal of large tumors.

Cancer immunotherapy refers to a diverse set of therapeutic strategies designed to induce the patient's own immune system to fight the tumor. Contemporary methods for generating an immune response against tumours include intravesical BCG immunotherapy for superficial bladder cancer, and use of interferons and other cytokines to induce an immune response in renal cell carcinoma and melanoma patients. Vaccines to generate specific immune responses are the subject of intensive research for a number of tumours, notably malignant melanoma and renal cell carcinoma. Sipuleucel-T is a vaccine-like strategy in late clinical trials for prostate cancer in which dendritic cells from the patient are loaded with prostatic acid phosphatase peptides to induce a specific immune response against prostate-derived cells.

Allogeneic hematopoietic stem cell transplantation ("bone marrow transplantation" from a genetically non-identical donor) can be considered a form of immunotherapy, since the donor's immune cells will often attack the tumor in a phenomenon known as graft-versus-tumor effect. For this reason, allogeneic HSCT leads to a higher cure rate than autologous transplantation for several cancer types, although the side effects are also more severe.

The growth of some cancers can be inhibited by providing or blocking certain hormones. Common examples of hormone-sensitive tumors include certain types of breast and prostate cancers. Removing or blocking estrogen or testosterone is often an important additional treatment. In certain cancers, administration of hormone agonists, such as progestogens may be therapeutically beneficial.

Angiogenesis inhibitors prevent the extensive growth of blood vessels (angiogenesis) that tumors require to survive. Some, such as bevacizumab, have been approved and are in clinical use. One of the main problems with anti-angiogenesis drugs is that many factors stimulate blood vessel growth in cells normal or cancerous. Anti-angiogenesis drugs only target one factor, so the other factors continue to stimulate blood vessel growth. Other problems include route of administration, maintenance of stability and activity and targeting at the tumor vasculature.

Although the control of the symptoms of cancer is not typically thought of as a treatment directed at the cancer, it is an important determinant of the quality of life of cancer patients, and plays an important role in the decision whether the patient is able to undergo other treatments. Although doctors generally have the therapeutic skills to reduce pain, nausea, vomiting, diarrhea, hemorrhage and other common problems in cancer patients, the multidisciplinary specialty of palliative care has arisen specifically in response to the symptom control needs of this group of patients.

Pain medication, such as morphine and oxycodone, and antiemetics, drugs to suppress nausea and vomiting, are very commonly used in patients with cancer-related symptoms. Improved antiemetics such as ondansetron and analogues, as well as aprepitant have made aggressive treatments much more feasible in cancer patients.

Chronic pain due to cancer is almost always associated with continuing tissue damage due to the disease process or the treatment (i.e. surgery, radiation, chemotherapy). Although there is always a role for environmental factors and affective disturbances in the genesis of pain behaviors, these are not usually the predominant etiologic factors in patients with cancer pain. Furthermore, many patients with severe pain associated with cancer are nearing the end of their lives and palliative therapies are required. Issues such as social stigma of using opioids, work and functional status, and health care consumption are not likely to be important in the overall case management. Hence, the typical strategy for cancer pain management is to get the patient as comfortable as possible using opioids and other medications, surgery, and physical measures. Doctors have been reluctant to prescribe narcotics for pain in terminal cancer patients, for fear of contributing to addiction or suppressing respiratory function. The palliative care movement, a more recent offshoot of the hospice movement, has engendered more widespread support for preemptive pain treatment for cancer patients.

Fatigue is a very common problem for cancer patients, and has only recently become important enough for oncologists to suggest treatment, even though it plays a significant role in many patients' quality of life.

Clinical trials, also called research studies, test new treatments in people with cancer. The goal of this research is to find better ways to treat cancer and help cancer patients. Clinical trials test many types of treatment such as new drugs, new approaches to surgery or radiation therapy, new combinations of treatments, or new methods such as gene therapy.

A clinical trial is one of the final stages of a long and careful cancer research process. The search for new treatments begins in the laboratory, where scientists first develop and test new ideas. If an approach seems promising, the next step may be testing a treatment in animals to see how it affects cancer in a living being and whether it has harmful effects. Of course, treatments that work well in the lab or in animals do not always work well in people. Studies are done with cancer patients to find out whether promising treatments are safe and effective.

Patients who take part may be helped personally by the treatment they receive. They get up-to-date care from cancer experts, and they receive either a new treatment being tested or the best available standard treatment for their cancer. At the same time, new treatments also may have unknown risks, but if a new treatment proves effective or more effective than standard treatment, study patients who receive it may be among the first to benefit. There is no guarantee that a new treatment being tested or a standard treatment will produce good results. In children with cancer, a survey of trials found that those enrolled in trials were on average not more likely to do better or worse than those on standard treatment; this confirms that success or failure of an experimental treatment cannot be predicted.

Complementary and alternative medicine (CAM) treatments are the diverse group of medical and health care systems, practices, and products that are not part of conventional medicine. "Complementary medicine" refers to methods and substances used along with conventional medicine, while "alternative medicine" refers to compounds used instead of conventional medicine. CAM use is common among people with cancer; a 2000 study found that 69% of cancer patients had used at least one CAM therapy as part of their cancer treatment. Most complementary and alternative medicines for cancer have not been rigorously studied or tested. Some alternative treatments which have been investigated and shown to be ineffective continue to be marketed and promoted.

The incidence of concurrent cancer during pregnancy has risen due to the increasing age of pregnant mothers. In such case, cancer treatment needs to be selected to do least harm to the child.

Radiation therapy is generally out of the question, and chemotherapy always poses the risk of miscarriage and congenital malformations. Little is known about the effects of medications on the child.

Even if a drug has been tested as not crossing the placenta to reach the child, some cancer forms can harm the placenta and make the drug pass over it anyway. Some forms of skin cancer may even metastasize to the child's body.

Diagnosis is also made more difficult, since computed tomography is infeasible because of its high radiation dose. Still, magnetic resonance imaging works normally. However, contrast media cannot be used, since they cross the placenta.

As a consequence of the difficulties to properly diagnose and treat cancer during pregnancy, the alternative methods are either to perform a Cesarean section when the child is viable in order to begin a more aggressive cancer treatment, or, if the cancer is malignant enough that the mother is unlikely to be able to wait that long, to perform an abortion in order to treat the cancer.

Cancer has a reputation for being a deadly disease. While this certainly applies to certain particular types, the truths behind the historical connotations of cancer are increasingly being overturned by advances in medical care. Some types of cancer have a prognosis that is substantially better than nonmalignant diseases such as heart failure and stroke.

Progressive and disseminated malignant disease has a substantial impact on a cancer patient's quality of life, and many cancer treatments (such as chemotherapy) may have severe side-effects. In the advanced stages of cancer, many patients need extensive care, affecting family members and friends. Palliative care solutions may include permanent or "respite" hospice nursing.

Many local organizations offer a variety of practical and support services to people with cancer. Support can take the form of support groups, counseling, advice, financial assistance, transportation to and from treatment, films or information about cancer. Neighborhood organizations, local health care providers, or area hospitals may have resources or services available.

Counseling can provide emotional support to cancer patients and help them better understand their illness. Different types of counseling include individual, group, family, peer counseling, bereavement, patient-to-patient, and sexuality.

Many governmental and charitable organizations have been established to help patients cope with cancer. These organizations are often involved in cancer prevention, cancer treatment, and cancer research.

Cancer is responsible for about 25% of all deaths in the U.S., and is a major public health problem in many parts of the world. In the U.S., lung cancer causes about 30% of cancer deaths but only about 15% of new cancer cases; the most commonly occurring cancer in men is prostate cancer (about 25% of new cases) and in women is breast cancer (also about 25%). Cancer can also occur in young children and adolescents, but it is rare (about 150 cases per million in the U.S.), with leukemia being the most common. In the first year of life the incidence is about 230 cases per million in the U.S., with the most common being neuroblastoma.

Over a third of cancer deaths worldwide are due to potentially modifiable risk factors, which are headed by tobacco smoking, alcohol use, and diets low in fruit and vegetables. In developed countries overweight and obesity is also a leading cause of cancer, and in low-and-middle-income countries sexual transmission of human papillomavirus is a leading risk factor for cervical cancer.

Today, the Greek term carcinoma is the medical term for a malignant tumor derived from epithelial cells. It is Celsus who translated carcinos into the Latin cancer, also meaning crab. Galen used "oncos" to describe all tumours, the root for the modern word oncology.

Hippocrates described several kinds of cancers. He called benign tumours oncos, Greek for swelling, and malignant tumours carcinos, Greek for crab or crayfish. This name comes from the appearance of the cut surface of a solid malignant tumour, with the veins stretched on all sides as the animal the crab has its feet, whence it derives its name (see picture). He later added the suffix -oma, Greek for swelling, giving the name carcinoma. Since it was against Greek tradition to open the body, Hippocrates only described and made drawings of outwardly visible tumors on the skin, nose, and breasts. Treatment was based on the humor theory of four bodily fluids (black and yellow bile, blood, and phlegm). According to the patient's humor, treatment consisted of diet, blood-letting, and/or laxatives. Through the centuries it was discovered that cancer could occur anywhere in the body, but humor-theory based treatment remained popular until the 19th century with the discovery of cells.

Another very early surgical treatment for cancer was described in the 1020s by Avicenna (Ibn Sina) in The Canon of Medicine. He stated that the excision should be radical and that all diseased tissue should be removed, which included the use of amputation or the removal of veins running in the direction of the tumor. He also recommended the use of cauterization for the area being treated if necessary.

In the 16th and 17th centuries, it became more acceptable for doctors to dissect bodies to discover the cause of death. The German professor Wilhelm Fabry believed that breast cancer was caused by a milk clot in a mammary duct. The Dutch professor Francois de la Boe Sylvius, a follower of Descartes, believed that all disease was the outcome of chemical processes, and that acidic lymph fluid was the cause of cancer. His contemporary Nicolaes Tulp believed that cancer was a poison that slowly spreads, and concluded that it was contagious.

The first cause of cancer was identified by British surgeon Percivall Pott, who discovered in 1775 that cancer of the scrotum was a common disease among chimney sweeps. The work of other individual physicians led to various insights, but when physicians started working together they could make firmer conclusions.

With the widespread use of the microscope in the 18th century, it was discovered that the 'cancer poison' spread from the primary tumor through the lymph nodes to other sites ("metastasis"). This view of the disease was first formulated by the English surgeon Campbell De Morgan between 1871 and 1874. The use of surgery to treat cancer had poor results due to problems with hygiene. The renowned Scottish surgeon Alexander Monro saw only 2 breast tumor patients out of 60 surviving surgery for two years. In the 19th century, asepsis improved surgical hygiene and as the survival statistics went up, surgical removal of the tumor became the primary treatment for cancer. With the exception of William Coley who in the late 1800s felt that the rate of cure after surgery had been higher before asepsis (and who injected bacteria into tumors with mixed results), cancer treatment became dependent on the individual art of the surgeon at removing a tumor. During the same period, the idea that the body was made up of various tissues, that in turn were made up of millions of cells, laid rest the humor-theories about chemical imbalances in the body. The age of cellular pathology was born.

When Marie Curie and Pierre Curie discovered radiation at the end of the 19th century, they stumbled upon the first effective non-surgical cancer treatment. With radiation also came the first signs of multi-disciplinary approaches to cancer treatment. The surgeon was no longer operating in isolation, but worked together with hospital radiologists to help patients. The complications in communication this brought, along with the necessity of the patient's treatment in a hospital facility rather than at home, also created a parallel process of compiling patient data into hospital files, which in turn led to the first statistical patient studies.

A founding paper of cancer epidemiology was the work of Janet Lane-Claypon, who published a comparative study in 1926 of 500 breast cancer cases and 500 control patients of the same background and lifestyle for the British Ministry of Health. Her ground-breaking work on cancer epidemiology was carried on by Richard Doll and Austin Bradford Hill, who published "Lung Cancer and Other Causes of Death In Relation to Smoking. A Second Report on the Mortality of British Doctors" followed in 1956 (otherwise known as the British doctors study). Richard Doll left the London Medical Research Center (MRC), to start the Oxford unit for Cancer epidemiology in 1968. With the use of computers, the unit was the first to compile large amounts of cancer data. Modern epidemiological methods are closely linked to current concepts of disease and public health policy. Over the past 50 years, great efforts have been spent on gathering data across medical practise, hospital, provincial, state, and even country boundaries, as a way to study the interdependence of environmental and cultural factors on cancer incidence.

Cancer patient treatment and studies were restricted to individual physicians' practices until World War II, when medical research centers discovered that there were large international differences in disease incidence. This insight drove national public health bodies to make it possible to compile health data across practises and hospitals, a process that many countries do today. The Japanese medical community observed that the bone marrow of victims of the atomic bombings of Hiroshima and Nagasaki was completely destroyed. They concluded that diseased bone marrow could also be destroyed with radiation, and this led to the discovery of bone marrow transplants for leukemia. Since World War II, trends in cancer treatment are to improve on a micro-level the existing treatment methods, standardize them, and globalize them as a way to find cures through epidemiology and international partnerships.

Cancer research is the intense scientific effort to understand disease processes and discover possible therapies. The improved understanding of molecular biology and cellular biology due to cancer research has led to a number of new, effective treatments for cancer since President Nixon declared "War on Cancer" in 1971. Since 1971 the United States has invested over $200 billion on cancer research; that total includes money invested by public and private sectors and foundations. Leading cancer research organizations and projects include the American Association for Cancer Research, the American Cancer Society (ACS), the American Society of Clinical Oncology, the European Organisation for Research and Treatment of Cancer, the National Cancer Institute, the National Comprehensive Cancer Network, and The Cancer Genome Atlas project at the NCI.

To the top



Human papillomavirus

Genome organization of human papillomavirus type 16, one of the subtypes known to cause cervical cancer. (E1-E7 early genes, L1-L2 late genes: capsid)

About 30-40 HPV types are typically transmitted through sexual contact and infect the anogenital region. Some sexually transmitted HPV types may cause genital warts. Persistent infection with "high-risk" HPV types — different from the ones that cause warts — may progress to precancerous lesions and invasive cancer. HPV infection is a cause of nearly all cases of cervical cancer. However most infections with these types do not cause disease.

A cervical Pap smear is used to detect cellular abnormalities. This allows targeted surgical removal of condylomatous and/or potentially precancerous lesions prior to the development of invasive cervical cancer. Although the widespread use of Pap testing has reduced the incidence and lethality of cervical cancer in developed countries, the disease still kills several hundred thousand women per year worldwide. HPV vaccines, Gardasil and Cervarix, which prevent infection with some of the sexually transmitted HPV types that cause the most disease may lead to further decreases in the incidence of HPV-induced cancers.

HPV is estimated to be the most common sexually transmitted infection in the United States. Most sexually active men and women will probably acquire genital HPV infection at some point in their lives. The American Social Health Association reported estimates that about 75-80% of sexually active Americans will be infected with HPV at some point in their lifetime. By the age of 50 more than 80% of American women will have contracted at least one strain of genital HPV.

It was estimated that in the year 2000, there were approximately 6.2 million new HPV infections among Americans aged 15-44; of these, an estimated 74% occurred to people between ages 15-24. Of the STDs studied, genital HPV was the most commonly acquired.

Estimates of HPV prevalence vary from 14% to more than 90%. One reason for the difference is that some studies report women who currently have a detectable infection, while other studies report women who have ever had a detectable infection. Another cause of discrepancy is the difference in strains that were tested for.

One study found that, during 2003–2004, at any given time, 26.8% of women aged 14 to 59 were infected with at least one type of HPV. This was higher than previous estimates. 15.2% were infected with one or more of the high-risk types that can cause cancer. However only 3.4% were infected with one or more of the four types prevented by the Gardasil vaccine, which was lower than previous estimates.

Note that prevalence decreases with age. This may be due to HPV infection being cleared by the immune system, or sinking to undetectable levels while still present in the body. HPV will probably remain in the infected person's cells for an indefinite time--most often in a latent state, but occasionally producing symptoms or disease. Recent studies from the Albert Einstein College of Medicine and from the University of Washington suggest that HPV may eventually be cleared in most people with well functioning immune systems. It appears that in some cases the virus does remain in the body indefinitely, producing symptoms if the immune system weakens.

Women who do not have regular cervical cancer screenings substantially increase their risk of developing cancer, because potentially precancerous lesions are not detected and they do not receive appropriate follow-up. An estimated 11% of American women do not have regular cervical cancer screenings. The American Cancer Society estimates that in 2008, about 11,070 women in the United States will be diagnosed with invasive cervical cancer, and about 3,870 US women will die from this disease.

The HPV lifecycle strictly follows the differentiation program of the host keratinocyte. It is thought that the HPV virion infects epithelial tissues through micro-abrasions, whereby the virion associates with putative receptors such as alpha integrins and laminins, leading to entry of the virions into basal epithelial cells through clathrin-mediated endocytosis and/or caveolin-mediated endocytosis depending on the type of HPV. At this point, the viral genome is transported to the nucleus by unknown mechanisms and establishes itself at a copy number between 10-200 viral genomes per cell. A sophisticated transcriptional cascade then occurs as the host keratinocyte begins to divide and become increasingly differentiated in the upper layers of the epithelium. The viral oncogenes, E6 and E7, are thought to modify the cell cycle so as to retain the differentiating host keratinocyte in a state that is amiable to the amplification of viral genome replication and consequent late gene expression. E6 in association with host E6 AP (associated protein), which has ubiquitin ligase activity act to ubiquitinate p53 leading to its proteosomal degradation. E7 (inoncogenic HPV's) acts as the primary transforming protein. E7 competes for pRb binding, freeing the transcription factor E2F to transactivate its targets, thus pushing the cell cycle forwards. All HPV can induce transient proliferation, but only 16 and 18 can immortalise cell intes (in vitro). It has also been shown that HPV 16 and 18 cannot immortalise primary rat cells alone, there needs to be activation of the ras oncogene. In the upper layers of the host epithelium, the late genes L1 and L2 are transcribed/translated and serve as structural proteins which encapsidate (Encapsidation is the process of incorporating a nucleic acid sequence (e.g., a vector, or a viral genome) into a viral particle) the amplified viral genomes. Virions can then be sloughed off in the dead squames of the host epithelium and the viral lifecycle continues.

Once an HPV viron invades a cell, an active infection occurs, and the virus can be transmitted. Several months to years may elapse before squamous intraepithelial lesions (SIL) develop and can be clinically detected. The time from active infection to clinically detectable disease makes it difficult for someone who has become infected to establish which partner was the source of infection.

Over 100 different HPV types have been identified and are referred to by number. Types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68 are "high-risk" sexually transmitted HPVs and may lead to the development of cervical intraepithelial neoplasia (CIN), vulvar intraepithelial neoplasia (VIN), penile intraepithelial neoplasia (PIN), and/or anal intraepithelial neoplasia (AIN).

About a dozen HPV types (including types 16, 18, 31 and 45) are called "high-risk" types because they can lead to cervical cancer, as well as anal cancer, vulvar cancer, and penile cancer. Several types of HPV, particularly type 16, have been found to be associated with oropharyngeal squamous-cell carcinoma, a form of head and neck cancer. HPV-induced cancers often have viral sequences integrated into the cellular DNA. Some of the HPV "early" genes, such as E6 and E7, are known to act as oncogenes that promote tumor growth and malignant transformation.

The p53 protein prevents cell growth and stimulates apoptosis in the presence of DNA damage. It causes BAX protein upregulation, which blocks the anti-apoptotic effects of the mitochondrial BCL-2 protein. In addition, p53 also upregulates the p21 protein, which blocks the formation of the Cyclin D/Cdk4 complex, thereby preventing the phosphorylation of RB and, in turn, halting cell cycle progression by preventing the activation of E2F. In short, p53 is a tumor suppressor gene that arrests the cell cycle when there is DNA damage. The E6 and E7 proteins work by inhibiting tumor suppression genes involved in that pathway: E6 inhibits p53, while E7 inhibits p53, p21, and RB.

E6 - This protein has a close relationship with a cellular protein called E6-AP (E6-Associated Protein). E6-AP is involved in the ubiquitin ligase pathway. A system which acts to degrade proteins. E6-AP binds ubiquitin to the p53 protein, thereby flagging it for proteosomal degradation.

An infection with one or more high-risk HPV types is believed to be a prerequisite for the development of cervical cancer (the vast majority of HPV infections are not high risk); according to the American Cancer Society, women with no history of the virus do not develop this type of cancer. However, most HPV infections are cleared rapidly by the immune system and do not progress to cervical cancer. Because the process of transforming normal cervical cells into cancerous ones is slow, cancer occurs in people who have been infected with HPV for a long time, usually over a decade or more.

Sexually transmitted HPVs also cause a major fraction of anal cancers and approximately 25% of cancers of the mouth and upper throat (known as the oropharynx) (see figure). The latter commonly present in the tonsil area and HPV is linked to the increase in oral cancers in non-smokers. Engaging in anal sex or oral sex with an HPV-infected partner may increase the risk of developing these types of cancers.

Studies show a link between HPV infection and penile and anal cancer, and the risk for anal cancer is 17 to 31 times higher among gay and bisexual men than among heterosexual men. It has been suggested that anal Pap smear screening for anal cancer might benefit some sub-populations of men or women who engage in anal sex. There is no consensus that such screening is beneficial, or who should get an anal Pap smear.

Genital warts are quite contagious, while common, flat, and plantar warts are much less likely to spread from person to person.

Genital or anal warts (condylomata acuminata or venereal warts) are the most easily recognized sign of genital HPV infection. Although a wide variety of HPV types can cause genital warts, types 6 and 11 account for about 90% of all cases.

Most people who acquire genital wart-associated HPV types clear the infection rapidly without ever developing warts or any other symptoms. People may transmit the virus to others even if they don't display overt symptoms of infection.

HPV types that tend to cause genital warts are not the same ones that cause cervical cancer. However, since an individual can be infected with multiple types of HPV, the presence of warts does not rule out the possibility of high risk types of the virus also being present.

The types of HPV that cause genital warts are usually different from the types that cause warts on other parts of the body, such as the hands or inner thighs. People do not get "genital" warts by touching warts on their hands or feet.

HPV types 6 and 11 can cause a rare condition known as recurrent respiratory papillomatosis, in which warts form on the larynx or other areas of the respiratory tract.

These warts can recur frequently, may require repetitive surgery, may interfere with breathing, and in extremely rare cases can progress to cancer.

In very rare cases, HPV may cause epidermodysplasia verruciformis in immunocompromised individuals. The virus, unchecked by the immune system, causes the overproduction of keratin by skin cells, resulting in lesions resembling warts or cutaneous horns.

For instance, Dede Koswara, an Indonesian man developed warts that spread across his body and became root-like growths. Attempted treatment by both Indonesian and American doctors included surgical removal of the warts.

Avoiding sexual contact with an infected person is the only 100% effective prevention method; however, many people are unaware that they are infected with HPV. Condoms offer some protection, but exposed skin can transmit the virus. Two vaccines are currently available (see "HPV vaccines" below) to women between the ages of 9 and 26.

Certain types of sexually transmitted HPVs can cause cervical cancer. Persistent infection with one or more of about a dozen of these "high-risk" HPV types is an important factor in nearly all cases of cervical cancer. The development of HPV-induced cervical cancer is a slow process that generally takes many years. During this development phase, pre-cancerous cells can be detected by regular cervical cytology Papanicolaou screening, colloquially known as "Pap" smear testing. The Pap test is an effective strategy for reducing the risk of invasive cervical cancer. The Pap test involves taking cells from the cervix and putting them on a small glass slide and examining them under a microscope to look for abnormal cells. This method is 70% to 80% effective in detecting HPV-caused cellular abnormalities. A more sensitive method is a “Thin Prep,” in which the cells from the cervix are placed in a liquid solution. This test is 85% to 95% effective in detecting HPV-caused cellular abnormalities. The latter method is mainly used on women over 30. It is a combination Pap-HPV DNA test. If this test comes back negative women can usually wait 3 years before having the test done again. Detailed inspection of the cervix by colposcopy may be indicated if abnormal cells are detected by routine Pap smear. A frequently occurring example of an abnormal cell found in association with HPV is the koilocyte. (See figure.) The American College of Obstetricians and Gynecologists states that the newer liquid based cytology methods (Thinprep and Surepath) may miss 15-35% of CIN3's and cancer.

The Center for Disease Control (CDC) recommends that women get a Pap test no later than 3 years after their first sexual encounter and no later than 21 years of age. Women should have a Pap test every year until age 30. After age 30, women should discuss risk factors with their health care provider to determine whether a Pap test should be done yearly. If risk factors are low and previous Pap tests have been negative, most women only need to have tests every 2-3 years until 65 years of age (Centers for Disease Control 2005). All women are encouraged to get a yearly pap smear solely to detect cellular abnormalities caused by HPV.

Since the Pap test was developed there has been a 70% decrease in cervical cancer deaths over the last 50 years. Pap smear testing has proven to be one of the most successful screening tests in the history of medicine.

The HPV test detects many common "low" and "high-risk" HPV genotypes. This test is an important screening option, since a doctor may recommend more frequent Pap testing if the HPV test is positive for "high-risk" HPV. In March 2003, the US FDA approved a "hybrid-capture" test, marketed by Digene, as a primary screening tool for detecting HPV. This test was also approved for use as an adjunct to Pap testing, and may be performed during a routine Pap smear.

When patients are screened with both HPV testing and Pap testing the sensitivity reaches 100%. HPV testing can diagnose CIN 2-3 among women older than 30 years. The sensitivity of HPV testing alone was 94.6% and specificity was 94.1%. For patients at similar risk to those in this study (0.4% had CIN 2-3), this leads to a positive predictive value of 6.0% and negative predictive value of 100.0% (click here to adjust these results for patients at higher or lower risk of CIN 2-3).

In Australia, a self-sampling HPV DNA test - that women can do at home using an ordinary tampon - is being marketed by Tam Pap. It has been approved by the Therapeutic Goods Administration for distribution in Australia.

The recent outcomes in the identification of molecular pathways involved in cervical cancer provide helpful information about novel biomarkers that allow monitoring these essential molecular events in histological or cytological specimens. These biomarkers are likely to improve the detection of lesions that have a high risk of progression in both primary screening and triage settings. E6 and E7 mRNA detection (HPV OncoTect) or p16 cell-cycle protein levels are examples of these new molecular markers. According to published results these markers, which are highly sensitive and specific, allow to identify cells going through malignant transformation.

Although it is possible to test for HPV DNA in men, there are no FDA-approved tests for general screening in the United States or tests approved by the Canadian government, since the testing is inconclusive and considered medically unnecessary.

Genital warts are the only visible sign of low-risk HPV in men, and can be identified with a visual check of the genital area. These visible growths, however, are the result of non-carcinogenic HPV types. 5% acetic acid (vinegar) is used to identify both warts and squamous intraepithelial neoplasia (SIL) lesions with limited success by causing abnormal tissue to appear white, but most doctors have found this technique helpful only in moist areas, such as the female genital tract.

On June 8, 2006, the US Food and Drug Administration approved Gardasil, a prophylactic HPV vaccine which is marketed by Merck. The vaccine trial, conducted in adult women with a mean age of 23, showed protection against initial infection with HPV types 16 and 18, which together cause 70% of cervical cancers, and can cause other cancers, such as anal cancer. The vaccine also protects against HPV types 6 and 11, which cause 90 percent of genital warts.

GlaxoSmithKline is seeking approval for a prophylactic vaccine known as Cervarix targeting HPV types 16 and 18. It is delivered in three shots over six months. It is intended for females from 10 years of age onwards.

Gardasil vaccine is delivered in a series of three shots over six months at a cost of approximately $360 (US dollars). The CDC recommends that girls and women between the ages of 11 and 26 be vaccinated, though girls as young as 9 may benefit. Females not yet sexually active can be expected to receive the full benefit of vaccination. Women over 26 can be vaccinated at the discretion of a doctor, but the vaccination has not yet been approved by the FDA for this age range, and may not be covered by insurance. Studies have not yet conclusively shown benefits for patients over 26, possibly due to the high prevalence of infection and the fact that the vaccine has no effect upon current infections.

HPV vaccine is made up of proteins from the outer coat of the virus (HPV). There is no infectious material in this vaccine. There is also no thimerosal, a mercury based preservative, in the HPV vaccine. This vaccine has been tested in over 11,000 females (ages 9-26 years) around the world. These studies have shown no serious side effects. The most common side effect is soreness at the injection site. CDC, working with the FDA, will continue to monitor the safety of the vaccine after it is in general use.

The vaccine does not appear to protect against HPV types that females are infected with at the time of vaccination. However, females already infected with one or more vaccine HPV types before vaccination would be protected against disease caused by the other vaccine HPV types covered by the vaccine. Therefore, although overall vaccine effectiveness would be lower when administered to females who have been sexually active, and would decrease with age and likelihood of HPV exposure with increasing number of sex partners, the majority of females in this age group will derive at least partial benefit from vaccination. The vaccine will not have any therapeutic effect on existing HPV infection or cervical lesions.

Since the current vaccine will not protect women against all the HPV types that cause cervical cancer, women should continue to seek Pap smear testing, even after receiving the vaccine. Cervical cancer screening recommendations have not changed for females who receive HPV vaccine.

Both men and women are carriers of HPV. Possible benefits and efficacy of vaccinating men are being studied.

In addition to preventive vaccines, laboratory research and several human clinical trials are focused on the development of therapeutic HPV vaccines. In general, these vaccines focus on the main HPV oncogenes E6 and E7. Since expression of E6 and E7 is required for promoting the growth of cervical cancer cells (and cells within warts), it is hoped that immune responses against the two oncogenes might eradicate established tumors.

Carcinogens from tobacco and second-hand smoke are concentrated in the cervix, increasing rate of dysplasia by four to five times, and doubling the risk of cervical cancer.

Other studies have suggested that regular condom use can effectively limit the ongoing persistence and spread of HPV to additional genital sites in individuals who are already infected.

Thus, condom use may reduce the risk that infected individuals will progress to cervical cancer or develop additional genital warts. Planned Parenthood recommends condom use to reduce the risk of contracting HPV.

Ongoing research has suggested that several inexpensive chemicals might serve to block HPV transmission if applied to the genitals prior to sexual contact. These candidate agents, known as topical microbicides, are currently undergoing clinical efficacy testing. A recent study indicates that some sexual lubricant brands that use a gelling agent called carrageenan can inhibit papillomavirus infection in vitro. See Carrageenan#Sexual lubricant and microbicide for details.

Clinical trials are needed to determine whether carrageenan-based sexual lubricant gels are effective for blocking the sexual transmission of HPVs in vivo.

Therapies for conditions caused by HPV are addressed in main articles covering the various HPV-related diseases.

Infection with cutaneous HPVs is ubiquitous. Some HPV types, such as HPV-5, may establish infections that persist for the lifetime of the individual without ever manifesting any clinical symptoms. Like remora suckerfish that hitchhike harmlessly on sharks, these HPV types can be thought of as human commensals. Other cutaneous HPVs, such as HPV types 1 or 2, may cause common warts in some infected individuals. Skin warts are most common in childhood and typically appear and regress spontaneously over the course of weeks to months. About 10% of adults also suffer from recurring skin warts. All HPVs are believed to be capable of establishing long-term "latent" infections in small numbers of stem cells present in the skin. Although these latent infections may never be fully eradicated, immunological control is thought to block the appearance of symptoms such as warts. Immunological control is likely HPV type-specific, meaning that an individual may become immunologically resistant to one HPV type while remaining susceptible to other types.

A large increase in the incidence of genital HPV infection occurs at the age when individuals begin to engage in sexual activity. The great majority of genital HPV infections never cause any overt symptoms and are cleared by the immune system in a matter of months. As with cutaneous HPVs, immunity is believed to be HPV type-specific. Some infected individuals may fail to bring genital HPV infection under immunological control. Lingering infection with high-risk HPV types, such as HPVs 16, 18, 31 and 45, can lead to the development of cervical cancer or other types of cancer. In addition to persistent infection with high-risk HPV types, epidemiological and molecular data suggest that co-factors such as the cigarette smoke carcinogen benzopyrene (BaP) enhance development of certain HPV-induced cancers.

High-risk HPV types 16 and 18 are together responsible for over 65% of cervical cancer cases. Type 16 causes 41 to 54% of cervical cancers, and accounts for an even greater majority of HPV-induced vaginal/vulvar cancers, penile cancers, anal cancers and head and neck cancers.

Although genital HPV types are sometimes transmitted from mother to child during birth, the appearance of genital HPV-related diseases in newborns is rare. Perinatal transmission of HPV types 6 and 11 can result in the development of juvenile-onset recurrent respiratory papillomatosis (JORRP). JORRP is very rare, with rates of about 2 cases per 100,000 children in the United States. Although JORRP rates are substantially higher if a woman presents with genital warts at the time of giving birth, the risk of JORRP in such cases is still less than 1%.

The fact that prostitutes have much higher rates of cervical cancer than nuns was a key early observation leading researchers to speculate about a causal link between sexually transmitted HPVs and cervical cancer.

Dr. Harald zur Hausen of the German Cancer Research Centre, Heidelberg, Germany, was awarded 2008 Nobel Prize in Physiology or Medicine for his discovery of human papilloma viruses causing cervical cancer. He was interviewed as part of a radio program about the biology of HPV and the history of the discovery of its connection to cervical cancer.

To the top



Radiation therapy

Radiation therapy of the pelvis. Lasers and a mould under the legs are used to determine exact position.

Radiation therapy (also radiotherapy or radiation oncology) is the medical use of ionizing radiation as part of cancer treatment to control malignant cells (not to be confused with radiology, the use of radiation in medical imaging and diagnosis). Radiotherapy may be used for curative or adjuvant cancer treatment. It is used as palliative treatment (where cure is not possible and the aim is for local disease control or symptomatic relief) or as therapeutic treatment (where the therapy has survival benefit and it can be curative). Total body irradiation (TBI) is a radiotherapy technique used to prepare the body to receive a bone marrow transplant. Radiotherapy has several applications in non-malignant conditions, such as the treatment of trigeminal neuralgia, severe thyroid eye disease, pterygium, pigmented villonodular synovitis, prevention of keloid scar growth, and prevention of heterotopic ossification. The use of radiotherapy in non-malignant conditions is limited partly by worries about the risk of radiation-induced cancers.

Radiotherapy is used for the treatment of malignant tumors (cancer), and may be used as the primary therapy. It is also common to combine radiotherapy with surgery, chemotherapy, hormone therapy or some mixture of the three. Most common cancer types can be treated with radiotherapy in some way. The precise treatment intent (curative, adjuvant, neoadjuvant, therapeutic, or palliative) will depend on the tumour type, location, and stage, as well as the general health of the patient.

Radiation therapy is commonly applied to the cancerous tumour. The radiation fields may also include the draining lymph nodes if they are clinically or radiologically involved with tumour, or if there is thought to be a risk of subclinical malignant spread. It is necessary to include a margin of normal tissue around the tumour to allow for uncertainties in daily set-up and internal tumor motion. These uncertainties can be caused by internal movement (for example, respiration and bladder filling) and movement of external skin marks relative to the tumour position.

To spare normal tissues (such as skin or organs which radiation must pass through in order to treat the tumour), shaped radiation beams are aimed from several angles of exposure to intersect at the tumour, providing a much larger absorbed dose there than in the surrounding, healthy tissue.

Radiation therapy works by damaging the DNA of cells. The damage is caused by a photon, electron, proton, neutron, or ion beam directly or indirectly ionizing the atoms which make up the DNA chain. Indirect ionization happens as a result of the ionization of water, forming free radicals, notably hydroxyl radicals, which then damage the DNA. In the most common forms of radiation therapy, most of the radiation effect is through free radicals. Because cells have mechanisms for repairing DNA damage, breaking the DNA on both strands proves to be the most significant technique in modifying cell characteristics. Because cancer cells generally are undifferentiated and stem cell-like, they reproduce more, and have a diminished ability to repair sub-lethal damage compared to most healthy differentiated cells. The DNA damage is inherited through cell division, accumulating damage to the cancer cells, causing them to die or reproduce more slowly.

One of the major limitations of radiotherapy is that the cells of solid tumors become deficient in oxygen. Solid tumors can outgrow their blood supply, causing a low-oxygen state known as hypoxia. Oxygen is a potent radiosensitizer, increasing the effectiveness of a given dose of radiation by forming DNA-damaging free radicals. Tumor cells in a hypoxic environment may be as much as 2 to 3 times more resistant to radiation damage than those in a normal oxygen environment. Much research has been devoted to overcoming this problem including the use of high pressure oxygen tanks, blood substitutes that carry increased oxygen, hypoxic cell radiosensitizers such as misonidazole and metronidazole, and hypoxic cytotoxins, such as tirapazamine. There is also interest in the fact that high-LET (linear energy transfer) particles such as carbon or neon ions may have an antitumor effect which is less dependent of tumor oxygen because these particles act mostly via direct damage.

The amount of radiation used in radiation therapy is measured in gray (Gy), and varies depending on the type and stage of cancer being treated. For curative cases, the typical dose for a solid epithelial tumor ranges from 60 to 80 Gy, while lymphoma tumors are treated with 20 to 40 Gy.

Preventative (adjuvant) doses are typically around 45 - 60 Gy in 1.8 - 2 Gy fractions (for Breast, Head and Neck cancers respectively.) Many other factors are considered by radiation oncologists when selecting a dose, including whether the patient is receiving chemotherapy, whether radiation therapy is being administered before or after surgery, and the degree of success of surgery.

The total dose is fractionated (spread out over time) for several important reasons. Fractionation allows normal cells time to recover, while tumor cells are generally less efficient in repair between fractions. Fractionation also allows tumor cells that were in a relatively radio-resistant phase of the cell cycle during one treatment to cycle into a sensitive phase of the cycle before the next fraction is given. Similarly, tumor cells that were chronically or acutely hypoxic (and therefore more radioresistant) may reoxygenate between fractions, improving the tumor cell kill. Fractionation regimes are individualised between different radiotherapy centres and even between individual doctors. In the USA, Australia, and Europe, the typical fractionation schedule for adults is 1.8 to 2 Gy per day, five days a week. In the northern United Kingdom, fractions are more commonly 2.67 to 2.75 Gy per day, which eases the burden on thinly spread resources in the National Health Service. In some cancer types, prolongation of the fraction schedule over too long can allow for the tumor to begin repopulating, and for these tumor types, including head-and-neck and cervical squamous cell cancers, radiation treatment is preferably completed within a certain amount of time. For children, a typical fraction size may be 1.5 to 1.8 Gy per day, as smaller fraction sizes are associated with reduced incidence and severity of late-onset side effects in normal tissues.

In some cases, two fractions per day are used near the end of a course of treatment. This schedule, known as a concomitant boost regimen or hyperfractionation, is used on tumors that regenerate more quickly when they are smaller. In particular, tumors in the head-and-neck demonstrate this behavior.

One of the best-known alternative fractionation schedules is Continuous Hyperfractionated Accelerated Radiotherapy (CHART). CHART, used to treat lung cancer, consists of three smaller fractions per day. Although reasonably successful, CHART can be a strain on radiation therapy departments.

Implants can be fractionated over minutes or hours, or they can be permanent seeds which slowly deliver radiation until they become inactive.

Different cancers respond differently to radiation therapy.

The response of a cancer to radiation is described by its radiosensitivity. Highly radiosensitive cancer cells are rapidly killed by modest doses of radiation. These include leukaemias, most lymphomas and germ cell tumours. The majority of epithelial cancers are only moderately radiosensitive, and require a significantly higher dose of radiation (60-70Gy)to achieve a radical cure. Some types of cancer are notably radioresistant, that is, much higher doses are required to produce a radical cure than may be safe in clinical practice. Renal cell cancer and melanoma are generally considered to be radioresistant.

It is important to distinguish the radiosensitivity of a particular tumour, which to some extent is a laboratory measure, from the radiation "curability" of a cancer in actual clinical practice. For example, leukaemias are not generally curable with radiotherapy, because they are disseminated though the body. Lymphoma may be radically curable if it is localised to one area of the body. Similarly, many of the common, moderately radioresponsive tumours are routinely treated with curative doses of radiotherapy if they are at an early stage. For example: non-melanoma skin cancer, head and neck cancer, non-small cell lung cancer, cervical cancer, anal cancer, prostate cancer. Metastatic cancers are generally incurable with radiotherapy because it is not possible to treat the whole body.

The response of a tumour to radiotherapy is also related to its size. For complex reasons, very large tumours respond less well to radiation than smaller tumours or microscopic disease. Various strategies are used to overcome this effect. The most common technique is surgical resection prior to radiotherapy. This is most commonly seen in the treatment of breast cancer with wide local excision or mastectomy followed by adjuvant radiotherapy. Another method is to shrink the tumour with neoadjuvant chemotherapy prior to radical radiotherapy. A third technique is to enhance the radiosensitivity of the cancer by giving certain drugs during a course of radiotherapy. Examples of radiosensiting drugs include: Cisplatin, Nimorazole, and Cetuximab.

Radiation therapy has been in use as a cancer treatment for more than 100 years, with its earliest roots traced from the discovery of x-rays in 1895 by Wilhelm Röntgen.

The field of radiation therapy began to grow in the early 1900s largely due to the groundbreaking work of Nobel Prize-winning scientist Marie Curie, who discovered the radioactive elements polonium and radium. This began a new era in medical treatment and research. Radium was used in various forms until the mid-1900s when cobalt and caesium units came into use. Medical linear accelerators have been used to as sources of radiation since the late 1940s.

With Godfrey Hounsfield’s invention of computed tomography (CT) in 1971, three-dimensional planning became a possibility and created a shift from 2-D to 3-D radiation delivery; CT-based planning allows physicians to more accurately determine the dose distribution using axial tomographic images of the patient's anatomy. Orthovoltage and cobalt units have largely been replaced by megavoltage linear accelerators, useful for their penetrating energies and lack of physical radiation source.

The advent of new imaging technologies, including magnetic resonance imaging (MRI) in the 1970s and positron emission tomography (PET) in the 1980s, has moved radiation therapy from 3-D conformal to intensity-modulated radiation therapy (IMRT) and image-guided radiation therapy (IGRT). These advances have resulted in better treatment outcomes and fewer side effects.

Historically, the three main divisions of radiotherapy are external beam radiotherapy (EBRT or XBRT) or teletherapy, brachytherapy or sealed source radiotherapy, and systemic radioisotope therapy or unsealed source radiotherapy. The differences relate to the position of the radiation source; external is outside the body, brachytherapy uses sealed radioactive sources placed precisely in the area under treatment, and systemic radioisotopes are given by infusion or oral ingestion. Brachytherapy can use temporary or permanent placement of radioactive sources. The temporary sources are usually placed by a technique called afterloading. In afterloading a hollow tube or applicator is placed surgically in the organ to be treated, and the sources are loaded into the applicator after the applicator is implanted. This minimizes radiation exposure to health care personnel. Particle therapy is a special case of external beam radiotherapy where the particles are protons or heavier ions. Introperative radiotherapy is a special type of radiotherapy that is delivered immediately after surgical removal of the cancer. This method has been employed in breast cancer (TARGeted Introperative radioTherapy), brain tumours and rectal cancers.

The following three sections refer to treatment using x-rays.

Conventional external beam radiotherapy (2DXRT) is delivered via two-dimensional beams using linear accelerator machines. 2DXRT mainly consists of a single beam of radiation delivered to the patient from several directions: often front or back, and both sides. Conventional refers to the way the treatment is planned or simulated on a specially calibrated diagnostic x-ray machine known as a simulator because it recreates the linear accelerator actions (or sometimes by eye), and to the usually well-established arrangements of the radiation beams to achieve a desired plan. The aim of simulation is to accurately target or localize the volume which is to be treated. This technique is well established and is generally quick and reliable. The worry is that some high-dose treatments may be limited by the radiation toxicity capacity of healthy tissues which lay close to the target tumor volume. An example of this problem is seen in radiation of the prostate gland, where the sensitivity of the adjacent rectum limited theA detector system for imaging radiotherapeutic dose distributions in 4D dose which could be safely prescribed using 2DXRT planning to such an extent that tumor control may not be easily achievable. Prior to the invention of the CT, physicians and physicists had limited knowledge about the true radiation dosage delivered to both cancerous and healthy tissue. For this reason, 3-dimensional conformal radiotherapy is becoming the standard treatment for a number of tumor sites.

Stereotactic Radiotherapy is a type of external beam radiotherapy that focuses high doses of radiation within the body, and claims to be much more accurate than other methods of radiation therapy. Cyberknife, Gamma Knife and Novalis Tx are three current technologies.

The planning of radiotherapy treatment has been revolutionized by the ability to delineate tumors and adjacent normal structures in three dimensions using specialized CT and/or MRI scanners and planning software.

Virtual simulation, the most basic form of planning, allows more accurate placement of radiation beams than is possible using conventional X-rays, where soft-tissue structures are often difficult to assess and normal tissues difficult to protect.

An enhancement of virtual simulation is 3-Dimensional Conformal Radiotherapy (3DCRT), in which the profile of each radiation beam is shaped to fit the profile of the target from a beam's eye view (BEV) using a multileaf collimator (MLC) and a variable number of beams. When the treatment volume conforms to the shape of the tumour, the relative toxicity of radiation to the surrounding normal tissues is reduced, allowing a higher dose of radiation to be delivered to the tumor than conventional techniques would allow.

Intensity-Modulated Radiation Therapy (IMRT) is an advanced type of high-precision radiation that is the next generation of 3DCRT. IMRT also improves the ability to conform the treatment volume to concave tumor shapes, for example when the tumor is wrapped around a vulnerable structure such as the spinal cord or a major organ or blood vessel. Computer-controlled x-ray accelerators distribute precise radiation doses to malignant tumors or specific areas within the tumor. The pattern of radiation delivery is determined using highly-tailored computing applications to perform optimization and treatment simulation (Treatment Planning). The radiation dose is consistent with the 3-D shape of the tumor by controlling, or modulating, the radiation beam’s intensity. The radiation dose intensity is elevated near the gross tumor volume while radiation among the neighboring normal tissue is decreased or avoided completely. The customized radiation dose is intended to maximize tumor dose while simultaneously protecting the surrounding normal tissue. This may result in better tumor targeting, lessened side effects, and improved treatment outcomes than even 3DCRT.

3DCRT is still used extensively for many body sites but the use of IMRT is growing in more complicated body sites such as CNS, head and neck, prostate, breast and lung. Unfortunately, IMRT is limited by its need for additional time from experienced medical personnel. This is because physicians must manually delineate the tumors one CT image at a time through the entire disease site which can take much longer than 3DCRT preparation. Then, medical physicists and dosimetrists must be engaged to create a viable treatment plan. Also, the IMRT technology has only been used commercially since the late 1990s even at the most advanced cancer centers, so radiation oncologists who did not learn it as part of their residency program must find additional sources of education before implementing IMRT.

Proof of improved survival benefit from either of these two techniques over conventional radiotherapy (2DXRT) is growing for many tumor sites, but the ability to reduce toxicity is generally accepted. Both techniques enable dose escalation, potentially increasing usefulness. There has been some concern, particularly with 3DCRT, about increased exposure of normal tissue to radiation and the consequent potential for secondary malignancy. Overconfidence in the accuracy of imaging may increase the chance of missing lesions that are invisible on the planning scans (and therefore not included in the treatment plan) or that move between or during a treatment (for example, due to respiration or inadequate patient immobilization). New techniques are being developed to better control this uncertainty—for example, real-time imaging combined with real-time adjustment of the therapeutic beams. This new technology is called image-guided radiation therapy (IGRT) or four-dimensional radiotherapy.

In particle therapy (Proton therapy), energetic ionizing particles (protons or carbon ions) are directed at the target tumor. The dose increases while the particle penetrates the tissue, up to a maximum (the Bragg peak) that occurs near the end of the particle's range, and it then drops to (almost) zero. The advantage of this energy deposition profile is that less energy is deposited into the healthy tissue surrounding the target tissue.

Systemic radioisotope therapy is a form of targeted therapy. Targeting can be due to the chemical properties of the isotope such as radioiodine which is specifically absorbed by the thyroid gland a thousand fold better than other bodily organs. Targeting can also be achieved by attaching the radioisotope to another molecule or antibody to guide it to the target tissue. The radioisotopes are delivered through infusion (into the bloodstream) or ingestion. Examples are the infusion of metaiodobenzylguanidine (MIBG) to treat neuroblastoma, of oral iodine-131 to treat thyroid cancer or thyrotoxicosis, and of hormone-bound lutetium-177 and yttrium-90 to treat neuroendocrine tumors (peptide receptor radionuclide therapy). Another example is the injection of radioactive glass or resin microspheres into the hepatic artery to radioembolize liver tumors or liver metastases.

A major use of systemic radioisotope therapy is in the treatment of bone metastasis from cancer. The radioisotopes travel selectively to areas of damaged bone, and spare normal undamaged bone. Isotopes commonly used in the treatment of bone metastasis are strontium-89 and Samarium-153-ethylene diamine tetramethylene phosphonate.

In 2002, the United States Food and Drug Administration (FDA) approved Ibritumomab tiuxetan (Zevalin), which is a monoclonal antibody anti-CD20 conjugated to a molecule of Yttrium-90. In 2003, the FDA approved Tositumomab Iodine-131 (Bexxar), which conjugates a molecule of Iodine-131 to the monoclonal antibody anti-CD20. These medications were the first agents of what is known as radioimmunotherapy, and they were approved for the treatment of refractory non-Hodgkins lymphoma.

Radiation therapy is in itself painless. Many low-dose palliative treatments (for example, radiotherapy to bony metastases) cause minimal or no side effects, although short-term pain flare up can be experienced in the days following treatment due to oedema compressing nerves in the treated area. Treatment to higher doses causes varying side effects during treatment (acute side effects), in the months or years following treatment (long-term side effects), or after re-treatment (cumulative side effects). The nature, severity, and longevity of side effects depends on the organs that receive the radiation, the treatment itself (type of radiation, dose, fractionation, concurrent chemotherapy), and the patient.

Most side effects are predictable and expected. Side effects from radiation are usually limited to the area of the patients body that is under treatment. One of the aims of modern radiotherapy is to reduce side effects to a minimum, and to help the patient to understand and to deal with those side effects which are unavoidable.

Damage to the epithelial surfaces. Epithelial surfaces like skin, oral, pharyngeal and bowel mucosa, urothelium, etc. may sustain damage from radiation therapy. The rates of onset of damage and recovery from it depend upon the turnover rate of epithelial cells. Typically the skin starts to become pink and sore several weeks into treatment. The reaction may become more severe during the treatment and for up to about one week following the end of radiotherapy, and the skin may break down. Although this moist desquamation is uncomfortable, recovery is usually quick. Skin reactions tend to be worse in areas where there are natural folds in the skin, such as underneath the female breast, behind the ear, and in the groin.

Similarly, the lining of the mouth, throat, esophagus, and bowel may be damaged by radiation. If the head and neck area is treated, temporary soreness and ulceration commonly occur in the mouth and throat. If severe, this can affect swallowing, and the patient may need painkillers and nutritional support. The esophagus can also become sore if it is treated directly, or if, as commonly occurs, it receives a dose of collateral radiation during treatment of lung cancer.

The lower bowel may be treated directly with radiation (treatment of rectal or anal cancer) or be exposed by radiotherapy to other pelvic structures (prostate, bladder, female genital tract). Typical symptoms are soreness, diarrhoea, and nausea.

Swelling (edema or oedema). As part of the general inflammation that occurs, swelling of soft tissues may cause problems during radiotherapy. This is a concern during treatment of brain tumours and brain metastases, especially where there is pre-existing raised intracranial pressure or where the tumour is causing near-total obstruction of a lumen (e.g., trachea or main bronchus). Surgical intervention may be considered prior to treatment with radiation. If surgery is deemed unnecessary or inappropriate, the patient may receive steroids during radiotherapy to reduce swelling.

Infertility. The gonads (ovaries and testicles) are very sensitive to radiation. They may be unable to produce gametes following direct exposure to most normal treatment doses of radiation. Treatment planning for all body sites is designed to minimize, if not completely exclude dose to the gonads if they are not the primary area of treatment.

These depend on the tissue that received the treatment; they may be minimal.

Cumulative effects from this process should not be confused with long-term effects—when short-term effects have disappeared and long-term effects are subclinical, reirradiation can still be problematic.

To the top



Anal sex

Print, Paul Avril

Anal sex most often refers to the sex act involving insertion of the penis into the anus. The term anal sex can also sometimes include other sexual acts involving the anus, including but not limited to anilingus and fingering.

It is a form of sexual behavior considered to be comparatively high in risk, due to the vulnerability of the tissues and the septic nature of the anus. As the rectal mucosa provides little natural lubrication, a personal lubricant is most often required or preferred when penetrating the anus.

At the present time in Western countries anal sex is becoming an increasingly popular form of intercourse between men and women. One reason is that there is very low risk of unwanted pregnancy via unprotected anal intercourse. Also, anal sex is sometimes seen as preserving female virginity because it leaves the hymen intact. Another reason is that the anus is considered to yield more tactile pleasure for the penis, being tighter than the vagina.

Though more often applied to first penetration, the concept of "technical virginity" is sometimes conceived as resting solely on vaginal penetration.

A woman using a strap-on dildo to anally penetrate a man is referred to as pegging. Due to the proximity of the prostate gland to the rectum, it has been suggested that males may achieve greater satisfaction in this manner than females.

A 2001 French survey of five hundred female respondents concluded that a total of 29% had practiced anal sex, though only one third of these claimed to have enjoyed the experience. In contrast, in a 1999 South Korean survey of 586 women, only 3.5% of respondents reported having had anal sex.

Figures for the prevalence of sexual behavior can fluctuate over time. Edward O. Laumann's 1992 survey, reported in The Social Organization of Sexuality: Sexual Practices in the United States found that about 20% of heterosexuals have engaged in anal sex. Sex researcher Alfred Kinsey, working in the 1940s, had found that number to be closer to 40% at the time. More recently, a researcher from the University of British Columbia in 2005 put the number of heterosexuals who have practiced anal sex at between 30% and 50%.

Historically, anal sex has been popularly associated with male homosexuality and men who have sex with men (MSM). However, many MSM do not engage in anal sex, and some groups such as frot advocacy groups actively denounce anal sex as degrading toward the receptive partner and an unnecessary health risk. This viewpoint cites the increased HIV risk and physiological differences of the anus from the vagina.

Among MSM who do have anal sex, the insertive partner is referred to as the top or active partner. The man being penetrated is referred to as the bottom or passive partner. Preference for either is referred to as versatile.

In the receiving partner, being penetrated can produce a pleasurable sensation due to the inserted penis rubbing or brushing against the prostate through the anal wall. Penetration can be painful if the bottom partner's anus is not properly lubricated.

The prostate gland (also known as the "male G-spot" or "A-spot") can be stimulated during anal intercourse.

Stimulation of the prostate gland can result in pleasurable sensations and can lead to a distinct type of orgasm in some cases. The prostate is located next to the rectum and is the larger, more developed male homologue to the Skene's glands, which are believed to be connected to the female "G-spot". The Skene's glands are sometimes referred to as the "female prostate"; they are located around the urethra and can be felt through the wall of the vagina.

While at the present time it is reported more frequently among same-sex couples, according to Dr. John Dean and Dr. David Delvin, "in absolute numbers, it is hypothesized that more heterosexual couples have anal sex than homosexual couples".

The prevalence of anal sex among homosexual couples in the West has varied over time. Magnus Hirschfeld, in his 1914 magnum opus, The Homosexuality of Men and Women reports the rate of anal sex among homosexual men surveyed to be 8%, the least favored of all the practices documented.

By the 1950s in the United Kingdom, it was thought that about fifteen percent of male homosexuals practiced the method. The Gay Urban Men's Study (P.I. Stall, UCSF) and the Young Men's Study (YMS, PI Osmond/Catania, UCSF), indicate that 50% of men surveyed engage in anal sex. The Laumann study claims that 80% of gay men practice it, while the remaining 20% never engage in it at all.

A survey conducted from 1994 to 1997 in San Francisco by the Stop AIDS Project indicated that over the course of the study, among men who have sex with men, the proportion engaging in anal sex increased from 57.6% to 61.2%.

Anal sex exposes participants to two principal dangers: infections, due to the high number of infectious microorganisms not found elsewhere on the body, and physical damage to the anus and the rectum due to their vulnerability.

Recent reports have documented that risky behavior is on the rise among men who have sex with men. Likewise, among men who have sex with women, a 1992 study of socially and sexually active Puerto Rican men indicated that of the more than 40% who reported having anal sex with women, very few had used condoms. Among gay men, anal sex without the use of a condom is referred to as barebacking.

Among the diseases with which anal sex is associated are HIV, human papilloma virus (HPV) (which can increase risk for anal cancer) typhoid fever and various diseases associated with the infectious nature of fecal matter or sexual intercourse in general. Among these are: amoebiasis; chlamydia; cryptosporidiosis; E. coli infections; giardiasis; gonorrhea; hepatitis A; hepatitis B; hepatitis C; herpes simplex; human papillomavirus; Kaposi's sarcoma-associated herpesvirus (HHV-8); lymphogranuloma venereum; pubic lice; salmonellosis; shigella; syphilis; tuberculosis.

The high concentration of white blood cells around the rectum, together with the risk of cuts to the rectum and that one of the functions of the rectum is to absorb fluid, increases the risk of HIV transmission because the HIV retrovirus reproduces within the immune system's T-cells/CD4 cells. Use of condoms and other precautions are a medically recommended way to lessen risk of infections. Unprotected receptive anal sex is the most risky sexual behavior in terms of HIV transmission.

Most cases of anal cancer are related to infection with the human papilloma virus. The incidence of the disease has jumped 160% in men and 78% in women in the last thirty years, according to a 2004 American study. The increase is attributed to changing trends in sexual behavior and tobacco use. Current use of tobacco increased the incidence of anal cancer fourfold, while a history of multiple sex partners (fifteen or more) or receptive anal sex increased the incidence sevenfold.

Physical damage to the rectum and anus can manifest as generalized ano-rectal trauma, hemorrhoids, anal fissures, and rectal prolapse. An insufficient amount of lubricant can make it especially painful or injurious. Damage is more likely if intercourse is forcible or aggressive, if alcohol or other drugs have dulled sensitivity, if communication is poor, or if technique is clumsy.

A 1993 study published in the Journal of the Royal Society of Medicine found that fourteen out of a sample of forty men receiving anal intercourse experienced episodes of frequent anal incontinence. However, a 1997 study published in the American Journal of Gastroenterology found no difference in levels of incontinence between homosexual men who engaged in anal sex and heterosexual men who did not, and criticised the earlier study for its inclusion of flatulence in its definition of incontinence.

Dr. Jack Morin recommended kegel exercises to prevent loss of muscle tone from anal fisting or insertion of large objects in a presentation of clinical aspects of anal sexuality, delivered at the 1998 joint conference of the Society for the Scientific Study of Sexuality and the American Association of Sex Educators. He added, however, that he had never personally observed "loosening" in any of his patients.

Historically, a number of cultures have recorded the practice of anal intercourse between men. The males who participated in such relationships often did not do so exclusively, as participation in these relationships between men did not preclude sex with women. Such relations have also been documented as taking place in houses of prostitution, which provided youths or young men.

The term "Greek love" has long been used to refer to the practice, and in modern times, "doing it the Greek way" is sometimes used as slang for anal sex. However, homosexual anal sex was far from a universally accepted practice in Ancient Greece. It was the target of jokes in surviving comedies; Aristophanes mockingly alludes to the practice, claiming that "Most citizens are europroktoi (wide-arsed) now." While pedagogic pederasty was an essential element in the education of male youths, these relationships, at least in Athens and Sparta, were expected to steer clear of penetrative sex of any kind. There are very few works of pottery or other art that display anal sex between older men and boys, let alone with adult men. Most such works depict fondling or intercrural sex, which was not condemned for violating and feminizing the boys. Other sources make it clear that the practice was criticized as shameful, and seen as a form of hubris.

In later Roman age Greek poetry, anal sex became a common topos, represented as taking place with "eligible" youths: those who had attained the proper age but had not yet become adults. Seducing children into the practice was considered very shameful for the adult, and having such relations with a male who was no longer adolescent was considered more shameful for the young male than for the one mounting him. Greek courtesans, or hetaerae, are said to have frequently practiced heterosexual anal intercourse as a means of preventing pregnancy. The acceptability of anal sex thus varied with the time-period and the location, as Ancient Greece spanned a long time and stretched over three continents and two major seas.

For a male citizen to take the passive (or receptive) role in anal intercourse was condemned in Rome as an act of impudicitia (immodesty or unchastity). Free men, however, frequently took the active role with a young slave, known as a catamite or puer delicatus. In fact the Romans thought of anal sex as something specifically "Greek," although Roman men often availed themselves of their own slaves or others in this way.

In Japan, records (including detailed shunga) show that at least some men in relationships with other men did engage in penetrative anal intercourse.

Evidence suggestive of widespread heterosexual anal intercourse in a pre-modern culture can be found in the erotic vases, or stirrup-spout pots, made by the Moche people of Peru; in a survey of a collection of these pots, it was found that 31 percent of them depicted heterosexual anal intercourse, more by far than any other sex act. Moche pottery of this type belonged to the world of the dead, which was believed to be a reversal of life. Thus the reverse of common practices was often portrayed. The Larco Museum houses an Erotic Gallery in which this pottery is showcased.

The 19th century anthropologist Richard Francis Burton has theorized that there is a geographical Sotadic zone wherein penetrative intercourse between men is particularly prevalent and accepted; moreover he was one of the first writers to advance the premise that such an orientation is biologically determined.

In many Western countries, anal sex has generally been taboo since the Middle Ages when heretical movements were sometimes attacked by accusations that their members practised anal sex among themselves. At that time the mainstream Christian clergy was not celibate, but the highest orders of some heretical sects were, leading to rumours that their celibacy was a sign of their attraction to members of the same sex. The term buggery originated in medieval Europe as an insult used to describe the rumoured same-sex sexual practices of the heretics from a sect originating in Bulgaria, where its followers were called bogomils; when they spread out of the country they were called buggres (from the ethnonym Bulgars). Another term for the practice, more archaic, is "pedicate" from the Latin pedicare, with the same meaning.

The Renaissance poet Pietro Aretino advocated the practice in his Sonetti Lussuriosi (Lust Sonnets).

This prohibition of the Abrahamic religions against anal sex has been promulgated under the rubric of "sodomy," which includes various other transgressions of a sexual nature, whether with men, women or animals. This idea is vividly brought to life in the popular interpretation of the story of Sodom, where the people were prone to sexual immorality, and as a result were destroyed. There are conflicting views as to why Sodom was destroyed.

Orthodox Judaism teaches that homosexual anal sex is a sin, a toevah (abomination). This teaching is from the Biblical passages of Leviticus 18:22 and 20:13; the injunction "Do not lie with a man the lyings of a woman; it is abhorrent." has led rabbinical scholars to conclude "these verses to prohibit anal sex between men without any exception." The Conservative, Reform and Reconstructionist branches of Judaism are accepting of homosexuality, but less so of sodomy. However, Judaism permits heterosexual anal sex.

In Christian countries it has often been referred to euphemistically as the peccatum contra naturam (the sin against nature, after Thomas Aquinas) or Sodomitica luxuria (sodomitical lusts, in one of Charlemagne's ordinances), or peccatum illud horribile, inter christianos non nominandum (that horrible sin that among Christians is not to be named). Christian religions disapprove of anal sex, although the degree of disapprobation varies greatly between denominations.

Liwat, or the sin of Lot's people, is officially prohibited by most Islamic sects. There are parts of the Qur'an which talk about smiting on Sodom and Gomorrah, and this is thought to be a reference to unnatural sex, and so there are hadith and Islamic laws which prohibit it. Practitioners of anal relations are called luti and are seen as criminals in the same way that a thief is a criminal, meaning that they are giving in to a universal temptation. Liwat with a woman is known as lesser liwat and with a man as greater liwat.

There is no explicit prohibition against anal sex in Buddhist teachings. However, as the Buddha left very few absolute prohibitions against specific human conduct and principally encouraged the repetition of right action as a way to enlightenment and the gaining of positive karma, it is commonly considered within Buddhist teaching to be inconsistent with Buddhist precepts and principles.

To the top



Source : Wikipedia